PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3365.
Published online 2010 November 30. doi:  10.1107/S1600536810049536
PMCID: PMC3011442

2-[(E)-4-(2-Bromo­phen­yl)but-3-en-2-yl­idene]malononitrile

Abstract

The title compound, C13H19BrN2, is planar structure except for the methyl H atoms, the maximum atomic deviation for the non-H atoms being 0.100 (1) Å. The bromo­phenyl and isopropanylidenemalononitrile units are located on opposite sides of the C=C bond, showing an E configuration.

Related literature

For the use of malononitrile-containing compounds as building blocks in syntheses, see: Liu et al. (2002 [triangle]); Sepiol & Milart (1985 [triangle]); Zhang et al. (2003 [triangle]). For a related structure, see: Chen & Kang (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3365-scheme1.jpg

Experimental

Crystal data

  • C13H9BrN2
  • M r = 273.13
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3365-efi1.jpg
  • a = 7.0353 (7) Å
  • b = 7.0765 (5) Å
  • c = 13.3229 (8) Å
  • α = 82.192 (6)°
  • β = 76.628 (8)°
  • γ = 66.038 (9)°
  • V = 589.03 (8) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 4.52 mm−1
  • T = 291 K
  • 0.36 × 0.32 × 0.24 mm

Data collection

  • Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.293, T max = 0.410
  • 4500 measured reflections
  • 2062 independent reflections
  • 1923 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.112
  • S = 1.06
  • 2062 reflections
  • 146 parameters
  • H-atom parameters constrained
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049536/xu5097sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049536/xu5097Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks the Testing Centre of Sichuan University for the diffraction measurements and is grateful for financial support from China West Normal University (No. 412374).

supplementary crystallographic information

Comment

Malononitrile derivatives have broad application for the preparation of heterocyclic ring compounds. The chemistry of ylidene malononitrile have been studied extensively, From the ring closure reactions, the comounds containing newly formed five or six-membered rings, such as indans (Zhang et al., 2003), naphthalenes (Liu et al., 2002), benzenes (Sepiol et al., 1985) were obtained. Some crystal structures involving ylidene malononitrile groups have been published, including a recent report from our labratory Chen, et al., 2010). As a part of our interest in the synthsis of some complex ring systems, we investigated the title compound (I), which is a diene reagent in Diels-Alder reaction. We report herein the crystal structure of the title compound.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The molecule skeleton display an approximately planar structure except for the methyl group.

Experimental

2-(Propan-2-ylidene)malononitrile (0.212 g, 2 mmol) and 2-bromobenzaldehyde (0.366 g, 2 mmol) were dissolved in 2-propanol (2 ml). To the solution was added piperidine (0.017 g, 0.2 mmol), the solution was stirred for 24 h at 343 K. Then the reaction was cooled to room temperature, and the solution was filtered to obtain a yellow solid. Recrystallization from hot ethanol afforded the pure compound. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation ethyl acetate solution.

Refinement

H atoms were placed in calculated positions with C—H = 0.93–0.96 Å, and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for the others.

Figures

Fig. 1.
The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Crystal data

C13H9BrN2Z = 2
Mr = 273.13F(000) = 272
Triclinic, P1Dx = 1.540 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 7.0353 (7) ÅCell parameters from 3664 reflections
b = 7.0765 (5) Åθ = 6.8–71.9°
c = 13.3229 (8) ŵ = 4.52 mm1
α = 82.192 (6)°T = 291 K
β = 76.628 (8)°Block, yellow
γ = 66.038 (9)°0.36 × 0.32 × 0.24 mm
V = 589.03 (8) Å3

Data collection

Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer2062 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1923 reflections with I > 2σ(I)
mirrorRint = 0.024
Detector resolution: 7.9575 pixels mm-1θmax = 67.0°, θmin = 6.8°
ω scansh = −8→6
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −8→8
Tmin = 0.293, Tmax = 0.410l = −15→15
4500 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0759P)2 + 0.0933P] where P = (Fo2 + 2Fc2)/3
2062 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = −0.55 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.67339 (5)0.15902 (4)0.54256 (2)0.06643 (19)
C80.8775 (4)−0.3609 (4)0.7789 (2)0.0493 (6)
H80.8557−0.35150.84990.059*
N21.2571 (5)−1.0939 (4)0.7188 (2)0.0735 (8)
C111.0519 (4)−0.7373 (4)0.7984 (2)0.0455 (5)
C40.5298 (5)0.2647 (5)0.8955 (2)0.0598 (7)
H40.49940.28870.96550.072*
C131.0087 (4)−0.7342 (4)0.9092 (2)0.0527 (6)
C50.6402 (5)0.0655 (4)0.8620 (2)0.0563 (6)
H50.6835−0.04330.91030.068*
C90.9905 (4)−0.5636 (4)0.7362 (2)0.0461 (5)
C70.8037 (4)−0.1879 (4)0.7217 (2)0.0516 (6)
H70.8277−0.20240.65100.062*
C20.5107 (4)0.3937 (4)0.7208 (3)0.0563 (7)
H20.46840.50410.67320.068*
C101.0389 (5)−0.5797 (5)0.6211 (2)0.0584 (7)
H10A1.1160−0.72220.60440.088*
H10B1.1228−0.50130.58950.088*
H10C0.9087−0.52600.59580.088*
C60.6889 (4)0.0226 (4)0.7573 (2)0.0478 (6)
N10.9737 (5)−0.7329 (5)0.9974 (2)0.0749 (8)
C30.4644 (4)0.4289 (4)0.8242 (3)0.0604 (7)
H30.38910.56290.84660.072*
C121.1667 (4)−0.9376 (4)0.7555 (2)0.0532 (6)
C10.6206 (4)0.1936 (4)0.6873 (2)0.0496 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0880 (3)0.0444 (2)0.0549 (3)−0.01383 (17)−0.01666 (17)0.00310 (15)
C80.0616 (14)0.0331 (13)0.0509 (14)−0.0141 (11)−0.0134 (11)−0.0042 (10)
N20.0868 (17)0.0364 (14)0.0813 (19)−0.0086 (12)−0.0094 (14)−0.0120 (13)
C110.0542 (12)0.0334 (12)0.0467 (13)−0.0140 (10)−0.0109 (10)−0.0024 (10)
C40.0712 (16)0.0478 (15)0.0555 (16)−0.0208 (13)−0.0032 (13)−0.0105 (12)
C130.0673 (15)0.0354 (13)0.0519 (17)−0.0138 (11)−0.0196 (12)0.0028 (11)
C50.0706 (16)0.0384 (14)0.0559 (16)−0.0179 (12)−0.0128 (12)0.0009 (12)
C90.0549 (12)0.0336 (12)0.0481 (14)−0.0145 (10)−0.0117 (10)−0.0024 (10)
C70.0654 (14)0.0336 (13)0.0522 (15)−0.0145 (11)−0.0141 (11)−0.0015 (11)
C20.0583 (14)0.0329 (13)0.0699 (19)−0.0105 (11)−0.0140 (13)0.0022 (12)
C100.0780 (17)0.0425 (15)0.0469 (15)−0.0169 (13)−0.0093 (13)−0.0031 (11)
C60.0539 (13)0.0318 (12)0.0551 (15)−0.0140 (10)−0.0119 (11)0.0003 (10)
N10.105 (2)0.0617 (17)0.0521 (17)−0.0232 (15)−0.0236 (14)0.0012 (12)
C30.0602 (15)0.0371 (14)0.076 (2)−0.0120 (11)−0.0060 (13)−0.0109 (13)
C120.0629 (15)0.0354 (14)0.0566 (16)−0.0150 (12)−0.0122 (12)0.0011 (12)
C10.0508 (12)0.0359 (13)0.0575 (15)−0.0125 (10)−0.0116 (11)0.0009 (11)

Geometric parameters (Å, °)

Br1—C11.908 (3)C5—H50.9300
C8—C71.327 (4)C9—C101.502 (4)
C8—C91.449 (4)C7—C61.461 (4)
C8—H80.9300C7—H70.9300
N2—C121.140 (4)C2—C31.373 (5)
C11—C91.358 (4)C2—C11.387 (4)
C11—C121.437 (4)C2—H20.9300
C11—C131.438 (4)C10—H10A0.9600
C4—C51.383 (4)C10—H10B0.9600
C4—C31.390 (5)C10—H10C0.9600
C4—H40.9300C6—C11.412 (4)
C13—N11.144 (4)C3—H30.9300
C5—C61.401 (4)
C7—C8—C9123.3 (3)C3—C2—C1120.0 (3)
C7—C8—H8118.4C3—C2—H2120.0
C9—C8—H8118.4C1—C2—H2120.0
C9—C11—C12120.8 (2)C9—C10—H10A109.5
C9—C11—C13123.1 (2)C9—C10—H10B109.5
C12—C11—C13116.1 (2)H10A—C10—H10B109.5
C5—C4—C3119.7 (3)C9—C10—H10C109.5
C5—C4—H4120.2H10A—C10—H10C109.5
C3—C4—H4120.2H10B—C10—H10C109.5
N1—C13—C11179.5 (3)C5—C6—C1116.6 (2)
C4—C5—C6121.9 (3)C5—C6—C7122.1 (2)
C4—C5—H5119.0C1—C6—C7121.3 (3)
C6—C5—H5119.0C2—C3—C4120.2 (3)
C11—C9—C8121.1 (2)C2—C3—H3119.9
C11—C9—C10120.0 (2)C4—C3—H3119.9
C8—C9—C10119.0 (2)N2—C12—C11178.1 (3)
C8—C7—C6127.4 (3)C2—C1—C6121.5 (3)
C8—C7—H7116.3C2—C1—Br1117.1 (2)
C6—C7—H7116.3C6—C1—Br1121.4 (2)
C9—C11—C13—N1131 (44)C8—C7—C6—C5−0.8 (5)
C12—C11—C13—N1−49 (45)C8—C7—C6—C1179.5 (3)
C3—C4—C5—C6−0.1 (5)C1—C2—C3—C40.9 (4)
C12—C11—C9—C8−179.0 (2)C5—C4—C3—C2−0.5 (5)
C13—C11—C9—C80.7 (4)C9—C11—C12—N2−6(10)
C12—C11—C9—C101.1 (4)C13—C11—C12—N2175 (10)
C13—C11—C9—C10−179.1 (3)C3—C2—C1—C6−0.6 (4)
C7—C8—C9—C11−176.0 (3)C3—C2—C1—Br1178.9 (2)
C7—C8—C9—C103.8 (4)C5—C6—C1—C20.0 (4)
C9—C8—C7—C6−179.9 (3)C7—C6—C1—C2179.7 (3)
C4—C5—C6—C10.4 (4)C5—C6—C1—Br1−179.5 (2)
C4—C5—C6—C7−179.4 (3)C7—C6—C1—Br10.2 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5097).

References

  • Chen, L.-M. & Kang, T.-R. (2010). Acta Cryst. E66, o3148. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Liu, Y., Shen, B., Kotora, M., Nakajima, K. & Takahashi, T. (2002). J. Org. Chem.67, 7019–7028. [PubMed]
  • Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Sepiol, J. & Milart, P. (1985). Tetrahedron, 41, 5261–5265.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, B., Zhu, X.-Q., Lu, J.-Y., He, J., Wang, P.-G. & Cheng, J.-P. (2003). J. Org. Chem.68, 3295–3298. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography