PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3237.
Published online 2010 November 20. doi:  10.1107/S160053681004732X
PMCID: PMC3011440

4-(9,10-Dioxo-9,10-dihydro­anthracen-1-yl)-4-oxobutanoic acid

Abstract

In the title compound, C18H12O5, the anthracene moiety is almost planar (r.m.s. deviation = 0.0399 Å). In the crystal, mol­ecules are linked to each other by inter­molecular O—H(...)O and weak C—H(...)O hydrogen bonds.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For applications of natural and synthetic anthraquinones, see: Brown (1980 [triangle]). For their activity, see: Johnson et al. (1997 [triangle]). For the synthesis, see: Inbasekaran et al. (1980 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3237-scheme1.jpg

Experimental

Crystal data

  • C18H12O5
  • M r = 308.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3237-efi1.jpg
  • a = 5.168 (1) Å
  • b = 19.523 (4) Å
  • c = 14.367 (3) Å
  • β = 99.58 (3)°
  • V = 1429.3 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 293 K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.979, T max = 0.990
  • 2892 measured reflections
  • 2593 independent reflections
  • 1048 reflections with I > 2σ(I)
  • R int = 0.077
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.078
  • wR(F 2) = 0.161
  • S = 1.00
  • 2593 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681004732X/bq2254sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004732X/bq2254Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National High-tech R&D Program of China (Nos. 2007AA02Z200 and 2007AA06A402).

supplementary crystallographic information

Comment

Anthraquinone compounds are widely used in the chemical industry and medicine. Natural and synthetic anthraquinone compounds are used in food, cosmetics, hair color agent and textile dyes (Brown et al., 1980). In medicine, many of anthraquinones have diarrhea, anti-cell and other effects. The activity of anthraquinone derivatives has a great relationship with their planar frame structure (Johnson et al., 1997). We report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987). The anthrecene moiety is almost planar with an r.m.s. deviation of 0.0399 Å and a maximum deviation of 0.099 (4) Å for O2. In the crystal, molecules are linked to each other to form chains framework via intermolecular O—H···O and weak C—H···O hydrogen bonds.

Experimental

The compound 4-(anthracen-1-yl)butanoic acid was synthesized by the method (Inbasekaran et al., 1980). The crystals of the title compound (I) were obtained by dissolving the compound 4-(anthracen-1-yl)butanoic acid in methanol (25 ml) in the presence of oxygen and evaporating the solvent slowly at room temperature for about 10 d.

Refinement

H atoms were positioned geometrically, with O—H = 0.82Å (for OH) and C—H = 0.93 and 0.97Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/N), where x = 1.2 for aromatic H.

Figures

Fig. 1.
A drawing of the title molecular structure, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A packing diagram for (I). O—H···O and C—H···O intermolecular hydrogen bonds are shown by dashed lines.

Crystal data

C18H12O5F(000) = 640
Mr = 308.28Dx = 1.433 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 5.168 (1) Åθ = 8–12°
b = 19.523 (4) ŵ = 0.11 mm1
c = 14.367 (3) ÅT = 293 K
β = 99.58 (3)°Needle, colourless
V = 1429.3 (5) Å30.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1048 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.077
graphiteθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = 0→6
Absorption correction: ψ scan (North et al., 1968)k = 0→23
Tmin = 0.979, Tmax = 0.990l = −17→17
2892 measured reflections3 standard reflections every 200 reflections
2593 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.040P)2] where P = (Fo2 + 2Fc2)/3
2593 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.6562 (8)0.45510 (18)0.4314 (3)0.0687 (12)
O20.2523 (6)0.26823 (17)0.6393 (2)0.0534 (10)
O3−0.2936 (7)0.21707 (19)0.5131 (3)0.0722 (13)
O4−0.2825 (7)0.04974 (17)0.4635 (3)0.0580 (11)
O5−0.3291 (8)0.0347 (2)0.6115 (3)0.0796 (13)
H5A−0.44600.00900.58660.119*
C1−0.0859 (11)0.2918 (3)0.3566 (4)0.0590 (16)
H1A−0.23050.26620.32930.071*
C20.0084 (12)0.3422 (3)0.3052 (4)0.0656 (17)
H2A−0.06870.34990.24290.079*
C30.2165 (11)0.3814 (3)0.3457 (4)0.0556 (15)
H3A0.27760.41610.31070.067*
C40.3375 (10)0.3703 (2)0.4378 (4)0.0412 (13)
C50.5697 (10)0.4127 (3)0.4790 (4)0.0467 (14)
C60.6852 (10)0.4001 (2)0.5783 (3)0.0408 (13)
C70.9026 (11)0.4383 (3)0.6188 (4)0.0555 (15)
H7A0.97260.47120.58320.067*
C81.0149 (11)0.4274 (3)0.7122 (4)0.0611 (17)
H8A1.15750.45370.73970.073*
C90.9160 (11)0.3780 (3)0.7640 (4)0.0640 (17)
H9A0.99280.37020.82640.077*
C100.7023 (10)0.3397 (3)0.7236 (4)0.0548 (15)
H10A0.63720.30600.75930.066*
C110.5839 (9)0.3501 (2)0.6323 (4)0.0425 (13)
C120.3528 (10)0.3090 (2)0.5912 (4)0.0425 (13)
C130.2415 (9)0.3191 (2)0.4900 (3)0.0365 (12)
C140.0322 (9)0.2783 (2)0.4497 (3)0.0392 (12)
C15−0.0699 (10)0.2173 (3)0.4968 (4)0.0484 (14)
C160.0972 (9)0.1546 (2)0.5123 (4)0.0502 (14)
H16A0.27790.16790.53400.060*
H16B0.08980.13050.45290.060*
C170.0093 (10)0.1069 (2)0.5841 (4)0.0526 (15)
H17A0.15670.07840.61090.063*
H17B−0.03940.13430.63480.063*
C18−0.2128 (10)0.0622 (2)0.5464 (4)0.0493 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.081 (3)0.059 (3)0.071 (3)−0.018 (2)0.029 (2)0.018 (2)
O20.061 (3)0.053 (2)0.048 (2)−0.0200 (19)0.012 (2)0.0045 (18)
O30.035 (2)0.068 (3)0.119 (4)−0.007 (2)0.027 (2)−0.005 (2)
O40.060 (3)0.061 (2)0.049 (2)−0.026 (2)−0.003 (2)0.0015 (19)
O50.088 (3)0.086 (3)0.067 (3)−0.036 (3)0.021 (2)−0.005 (2)
C10.049 (4)0.060 (4)0.065 (4)0.000 (3)0.001 (3)−0.015 (3)
C20.077 (5)0.069 (4)0.044 (4)0.003 (4)−0.006 (3)−0.002 (3)
C30.072 (4)0.051 (4)0.046 (4)0.000 (3)0.018 (3)0.007 (3)
C40.043 (3)0.041 (3)0.041 (3)−0.004 (3)0.011 (3)0.003 (2)
C50.054 (4)0.038 (3)0.052 (4)0.000 (3)0.019 (3)0.002 (3)
C60.045 (3)0.030 (3)0.050 (3)−0.004 (3)0.014 (3)−0.005 (3)
C70.053 (4)0.046 (3)0.073 (4)−0.006 (3)0.025 (3)−0.014 (3)
C80.051 (4)0.062 (4)0.069 (4)−0.005 (3)0.006 (3)−0.019 (3)
C90.070 (4)0.068 (4)0.051 (4)−0.012 (4)0.002 (3)−0.011 (3)
C100.054 (4)0.062 (4)0.046 (4)−0.010 (3)0.000 (3)−0.005 (3)
C110.038 (3)0.039 (3)0.050 (3)0.002 (3)0.006 (3)−0.009 (3)
C120.041 (3)0.037 (3)0.052 (4)−0.002 (3)0.013 (3)−0.003 (3)
C130.031 (3)0.041 (3)0.038 (3)0.003 (2)0.008 (2)−0.009 (3)
C140.031 (3)0.039 (3)0.047 (3)0.005 (3)0.001 (3)−0.006 (3)
C150.039 (3)0.039 (3)0.067 (4)−0.003 (3)0.008 (3)−0.009 (3)
C160.038 (3)0.044 (3)0.071 (4)−0.009 (3)0.016 (3)−0.013 (3)
C170.051 (3)0.038 (3)0.068 (4)−0.007 (3)0.008 (3)−0.006 (3)
C180.048 (4)0.038 (3)0.061 (4)−0.010 (3)0.007 (3)0.004 (3)

Geometric parameters (Å, °)

O1—C51.206 (5)C7—H7A0.9300
O2—C121.225 (5)C8—C91.368 (7)
O3—C151.218 (5)C8—H8A0.9300
O4—C181.210 (6)C9—C101.379 (6)
O5—C181.308 (6)C9—H9A0.9300
O5—H5A0.8200C10—C111.367 (6)
C1—C21.367 (7)C10—H10A0.9300
C1—C141.400 (6)C11—C121.478 (6)
C1—H1A0.9300C12—C131.484 (6)
C2—C31.368 (7)C13—C141.389 (6)
C2—H2A0.9300C14—C151.508 (6)
C3—C41.383 (6)C15—C161.494 (6)
C3—H3A0.9300C16—C171.513 (6)
C4—C131.391 (6)C16—H16A0.9700
C4—C51.496 (6)C16—H16B0.9700
C5—C61.472 (6)C17—C181.472 (6)
C6—C71.393 (6)C17—H17A0.9700
C6—C111.402 (6)C17—H17B0.9700
C7—C81.388 (7)
C18—O5—H5A109.5C10—C11—C6119.1 (5)
C2—C1—C14120.8 (5)C10—C11—C12120.4 (5)
C2—C1—H1A119.6C6—C11—C12120.5 (5)
C14—C1—H1A119.6O2—C12—C11121.1 (5)
C1—C2—C3119.9 (5)O2—C12—C13120.5 (5)
C1—C2—H2A120.0C11—C12—C13118.4 (4)
C3—C2—H2A120.0C14—C13—C4120.7 (5)
C2—C3—C4121.2 (5)C14—C13—C12118.7 (5)
C2—C3—H3A119.4C4—C13—C12120.6 (5)
C4—C3—H3A119.4C13—C14—C1118.4 (5)
C3—C4—C13118.9 (5)C13—C14—C15124.9 (5)
C3—C4—C5119.8 (5)C1—C14—C15116.6 (5)
C13—C4—C5121.3 (5)O3—C15—C16120.8 (5)
O1—C5—C6122.4 (5)O3—C15—C14120.3 (5)
O1—C5—C4120.2 (5)C16—C15—C14118.6 (4)
C6—C5—C4117.4 (5)C15—C16—C17112.0 (4)
C7—C6—C11119.4 (5)C15—C16—H16A109.2
C7—C6—C5118.9 (5)C17—C16—H16A109.2
C11—C6—C5121.6 (5)C15—C16—H16B109.2
C8—C7—C6120.0 (5)C17—C16—H16B109.2
C8—C7—H7A120.0H16A—C16—H16B107.9
C6—C7—H7A120.0C18—C17—C16114.8 (5)
C9—C8—C7120.1 (6)C18—C17—H17A108.6
C9—C8—H8A120.0C16—C17—H17A108.6
C7—C8—H8A120.0C18—C17—H17B108.6
C8—C9—C10119.9 (6)C16—C17—H17B108.6
C8—C9—H9A120.1H17A—C17—H17B107.6
C10—C9—H9A120.1O4—C18—O5121.6 (5)
C11—C10—C9121.5 (6)O4—C18—C17124.5 (5)
C11—C10—H10A119.2O5—C18—C17113.8 (5)
C9—C10—H10A119.2
C14—C1—C2—C3−1.8 (8)C10—C11—C12—C13−176.1 (4)
C1—C2—C3—C41.1 (8)C6—C11—C12—C133.6 (6)
C2—C3—C4—C13−1.2 (8)C3—C4—C13—C141.8 (7)
C2—C3—C4—C5178.2 (5)C5—C4—C13—C14−177.5 (4)
C3—C4—C5—O1−2.2 (7)C3—C4—C13—C12−175.4 (4)
C13—C4—C5—O1177.1 (5)C5—C4—C13—C125.3 (7)
C3—C4—C5—C6178.1 (4)O2—C12—C13—C14−4.1 (7)
C13—C4—C5—C6−2.6 (7)C11—C12—C13—C14177.0 (4)
O1—C5—C6—C7−0.1 (7)O2—C12—C13—C4173.2 (4)
C4—C5—C6—C7179.6 (4)C11—C12—C13—C4−5.8 (6)
O1—C5—C6—C11−179.3 (5)C4—C13—C14—C1−2.5 (7)
C4—C5—C6—C110.4 (7)C12—C13—C14—C1174.8 (4)
C11—C6—C7—C8−0.8 (7)C4—C13—C14—C15173.8 (4)
C5—C6—C7—C8180.0 (5)C12—C13—C14—C15−8.9 (7)
C6—C7—C8—C91.5 (8)C2—C1—C14—C132.4 (7)
C7—C8—C9—C10−0.9 (8)C2—C1—C14—C15−174.2 (5)
C8—C9—C10—C11−0.4 (8)C13—C14—C15—O3118.0 (6)
C9—C10—C11—C61.1 (8)C1—C14—C15—O3−65.7 (7)
C9—C10—C11—C12−179.2 (5)C13—C14—C15—C16−69.1 (6)
C7—C6—C11—C10−0.4 (7)C1—C14—C15—C16107.2 (5)
C5—C6—C11—C10178.7 (5)O3—C15—C16—C17−24.0 (7)
C7—C6—C11—C12179.8 (4)C14—C15—C16—C17163.1 (4)
C5—C6—C11—C12−1.1 (7)C15—C16—C17—C1881.7 (5)
C10—C11—C12—O24.9 (7)C16—C17—C18—O418.2 (7)
C6—C11—C12—O2−175.3 (4)C16—C17—C18—O5−163.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···O4i0.821.862.681 (6)177
C7—H7A···O1ii0.932.433.255 (7)147
C16—H16A···O3iii0.972.483.375 (6)154

Symmetry codes: (i) −x−1, −y, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2254).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Brown, J. P. (1980). Mutat. Res.75, 243–277. [PubMed]
  • Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Inbasekaran, M. N., Witiak, D. T., Barone, K. & Loper, J. C. (1980). J. Med. Chem.23, 278–281. [PubMed]
  • Johnson, M. G., Kiyokawa, H., Tani, S., Koyama, J., Morris-Natschke, S. L., Mauger, A., Bowers-Daines, M. M., Lange, B. C. & Lee, K. (1997). Bioorg. Med. Chem.5, 1469–1479. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography