PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1547–m1548.
Published online 2010 November 13. doi:  10.1107/S1600536810044235
PMCID: PMC3011434

(N,N-Dimethyl­formamide-κO)bis­(3-hy­droxy­picolinato-κ2 N,O 2)phenyl­bis­muth(III)

Abstract

The title organometallic complex, [Bi(C6H5)(C6H4NO3)2(C3H7NO)], features a BiIII atom in a distorted pentagonal-pyramidal coordination by two N,O-donating bidentate 3-hy­droxy­picolinate (3-hpic) ligands, one monodentate dimethyl­formamide (dmf) mol­ecule and one phenyl ring. The C atom of the aryl ligand occupies the apical position of the BiCN2O3 coordination polyhedron, while the equatorial plane is formed by one O atom of the dmf ligand and two sets of N and O atoms from the chelating 3-hpic ligands. Inter­molecular secondary Bi(...)O [3.485 (3) Å] and O—H(...)O hydrogen-bonding inter­actions connect the complexes into a three-dimensional network. Intramolecular O—H(...)O hydrogen bonds are also observed.

Related literature

For a review on the structural chemistry of organobismuth derivatives, see Silvestru et al. (1999 [triangle]). For the crystal structures of related aryl­bis­muth(III) compounds, see: Stavila et al. (2007 [triangle], 2009 [triangle]); Stavila & Dikarev (2009 [triangle]); Andrews et al. (2006 [triangle]); Yu et al. (2004 [triangle]). For bis­muth(III) picolinate complexes, see: Callens et al. (2008 [triangle]). For a review on biomedical applications of bis­muth(III) compounds, see: Briand & Burford (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1547-scheme1.jpg

Experimental

Crystal data

  • [Bi(C6H5)(C6H4NO3)2(C3H7NO)]
  • M r = 635.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1547-efi1.jpg
  • a = 8.2377 (16) Å
  • b = 21.989 (4) Å
  • c = 12.380 (3) Å
  • β = 104.24 (3)°
  • V = 2173.6 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 8.16 mm−1
  • T = 294 K
  • 0.14 × 0.11 × 0.10 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.356, T max = 0.450
  • 15126 measured reflections
  • 3669 independent reflections
  • 3314 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.048
  • S = 1.11
  • 3669 reflections
  • 299 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.72 e Å−3
  • Δρmin = −0.94 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810044235/sj5046sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044235/sj5046Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the CRDF for financial support (award No. MOE2-2850-CS-06).

supplementary crystallographic information

Comment

The title compound, (I), was obtained from the solvent-free reaction of BiPh3 and 3-hydroxypicolinic acid (3-hpicH) with subsequent recrystallization from dimethylformamide (dmf) (see Experimental). Single-crystals suitable for X-Ray crystallography were obtained at room temperature from the concentrated dmf solution. The structure determination of (I) revealed a mononuclear compound, in which the BiIII atoms are hexa-coordinated in a distorted pentagonal pyramidal geometry with two N and two O atoms of N,O-chelating 3-hpic ligands and one dmf O donor in the equatorial plane (Figure 1). The axial position of the pentagonal pyramid is occupied by a carbon atom of the aryl group (Bi1—C41 = 2.245 (4) Å). Both picolinate ligands are monodeprotonated and display N,O-chelation through the pyridine N and carboxylate O atoms. There is an important asymmetry in the 3-hpic coordination to BiIII (Bi1—N1 = 2.660 (3) Å, Bi1—O11 = 2.348 (3) Å; Bi1—N2 = 2.488 (3) Å, Bi1—O21 = 2.382 (3) Å). The O atom of the coordinated dmf molecule (Bi1—O31 = 2.534 (3) Å) completes the equatorial plane of the pyramid.

There is a relatively large variation in the equatorial angles of the pyramid (64.97 – 77.37°) due to the difference in Bi—N and Bi—O bond lengths. Although the atoms Bi1, N1, O11, N2, O21 and O31 are not exactly coplanar, the sum of the corresponding angles is close to 360°, 359.80 (9)° (N1—Bi1—O11 = 64.98 (9)°, O11—Bi1—N2 = 74.25 (9)°, N2—Bi1—O21 = 67.72 (9)°, O21—Bi1—O31 = 77.37 (9)°, O31—Bi1—N1 = 75.49 (9)°). The C—Bi—O and C—Bi—N angles deviate from 90° (83.65–92.00°), contributing to the distortion of the pentagonal pyramidal coordination around the BiIII atom (Figure 2). Similar to other structurally characterized arylbismuth(III) compounds, the coordination sphere of BiIII is hemidirected (Stavila et al., 2007, 2009), (Stavila & Dikarev, 2009), suggesting that a stereochemically active lone electron pair is present.

Generally, secondary bonding interactions are rather common for monoaryl-bismuth(III) complexes. Thus, intermolecular secondary bonding interactions have been found in a number of aryl-bismuth diketonates (Stavila & Dikarev, 2009) and carboxylates (Stavila et al., 2007). In (I), the oxygen atom of one of the hydroxyl groups, O23, is involved in a weak secondary bond (Bi1···O23 = 3.485 (3) Å with an adjacent BiIII complex (Figure 3). The complex also displays intra- and intermolecular hydrogen bonds between the OH groups and oxygen atoms of the carboxylate groups (O13—H13A···O12, O13···O12 = 2.541 (5) Å; O23—H23A···O22, O23···O22 = 2.555 (5) Å; O23—H23A···O13i, O23···O13i = 2.917 (6) Å, (i) x + 1, y, z + 1).

Structures containing aryl bismuth(III) complexes with O or O/N donors typically display pentagonal pyramidal geometries and are comparatively rare (Andrews et al., 2006; Stavila & Dikarev, 2009; Stavila et al., 2007; Yu et al., 2004). In the same way, structures of bismuth(III) complexes with chelating picolinate ligands are uncommon (Callens et al., 2008).

Experimental

The initial reactants used were obtained commercially from Strem and Sigma-Aldrich. In a nitrogen filled glove-box, triphenylbismuth (440 mg, 1.0 mmol) and 3-hydroxypicolinic acid (420 mg, 3.0 mmol) were ground together for 30 min resulting in a light-grey powder. The mixture was placed in a Schlenk tube and heated upon stirring at 120 °C for 90 min. The resulting grey powder is treated with dry dmf, then filtered. The filtered solution is concentrated to ~1/4 of its initial volume and left for crystallization at room temperature. Crystals suitable for single-crystal X-ray crystallography were formed in 4 weeks.

Refinement

The H atoms bound to O13 and O23 were located in a difference map and their coordinates were refined with Uiso(H) values of 1.2Ueq (O). C-bound H atoms were located in calculated positions and constrained to ride on their parent atoms at distances of d(C-H) = 0.93Å, Uiso=1.2Ueq (C) for aromatic and 0.96Å, Uiso = 1.5Ueq (C) for CH3 atoms

Figures

Fig. 1.
An anisotropic displacement ellipsoid plot of the title compound (I), showing 40% probability displacement ellipsoids.
Fig. 2.
The coordination polyhedron of the BiIII ion in compound (I).
Fig. 3.
A packing diagram of compound (I) viewed down the a axis.

Crystal data

[Bi(C6H5)(C6H4NO3)2(C3H7NO)]F(000) = 1224
Mr = 635.38Dx = 1.942 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7774 reflections
a = 8.2377 (16) Åθ = 2.5–24.7°
b = 21.989 (4) ŵ = 8.16 mm1
c = 12.380 (3) ÅT = 294 K
β = 104.24 (3)°Block, light-yellow
V = 2173.6 (7) Å30.14 × 0.11 × 0.10 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer3669 independent reflections
Radiation source: fine-focus sealed tube3314 reflections with I > 2σ(I)
graphiteRint = 0.031
ω scansθmax = 24.8°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −9→9
Tmin = 0.356, Tmax = 0.450k = −25→25
15126 measured reflectionsl = −14→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.11w = 1/[σ2(Fo2) + (0.0202P)2 + 1.6444P] where P = (Fo2 + 2Fc2)/3
3669 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.72 e Å3
4 restraintsΔρmin = −0.94 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Bi10.163597 (16)0.410112 (6)0.270490 (11)0.02944 (6)
N1−0.0947 (4)0.39564 (14)0.0950 (3)0.0350 (7)
N20.4598 (3)0.44505 (13)0.3132 (2)0.0296 (7)
N3−0.1613 (4)0.30791 (16)0.4752 (3)0.0484 (9)
O110.2210 (3)0.43021 (14)0.0973 (2)0.0460 (7)
O120.1580 (4)0.43682 (17)−0.0856 (2)0.0616 (9)
O13−0.1422 (4)0.42463 (17)−0.1993 (3)0.0700 (10)
H13A−0.047 (2)0.4405 (17)−0.179 (3)0.084*
O210.3075 (3)0.39088 (11)0.4591 (2)0.0345 (6)
O220.5381 (3)0.40081 (12)0.5967 (2)0.0431 (7)
O230.7918 (3)0.45888 (13)0.5663 (2)0.0424 (7)
H23A0.721 (3)0.4455 (17)0.599 (2)0.051*
O31−0.0596 (3)0.35957 (13)0.3485 (2)0.0463 (7)
C110.1176 (5)0.42747 (18)0.0033 (3)0.0384 (9)
C12−0.0582 (5)0.41051 (16)−0.0012 (3)0.0342 (8)
C13−0.1795 (6)0.41097 (19)−0.1030 (4)0.0483 (11)
C14−0.3443 (6)0.3973 (2)−0.1012 (4)0.0602 (13)
H14A−0.42870.3973−0.16680.072*
C15−0.3797 (5)0.3840 (2)−0.0021 (4)0.0568 (12)
H15A−0.48930.37570.00070.068*
C16−0.2524 (5)0.3828 (2)0.0945 (4)0.0446 (10)
H16A−0.27810.37270.16140.053*
C210.4577 (5)0.40784 (15)0.4986 (3)0.0311 (8)
C220.5437 (4)0.43992 (15)0.4213 (3)0.0279 (8)
C230.7050 (4)0.46376 (16)0.4596 (3)0.0310 (8)
C240.7768 (4)0.49391 (17)0.3847 (3)0.0372 (9)
H24A0.88360.51050.40820.045*
C250.6894 (5)0.49916 (19)0.2758 (3)0.0405 (10)
H25A0.73600.51940.22470.049*
C260.5304 (5)0.47394 (18)0.2424 (3)0.0381 (9)
H26A0.47160.47740.16820.046*
C31−0.0559 (5)0.34549 (19)0.4457 (4)0.0421 (10)
H31A0.024 (5)0.3600 (19)0.512 (4)0.056 (13)*
C32−0.1501 (7)0.2935 (3)0.5913 (4)0.0744 (16)
H32A−0.05650.31460.63780.112*
H32B−0.13520.25050.60260.112*
H32C−0.25130.30600.61040.112*
C33−0.2927 (7)0.2800 (3)0.3906 (5)0.0903 (19)
H33A−0.28420.29320.31830.135*
H33B−0.39970.29160.40170.135*
H33C−0.28140.23650.39550.135*
C410.2374 (4)0.31401 (17)0.2439 (3)0.0341 (8)
C420.2978 (6)0.2968 (2)0.1537 (4)0.0550 (12)
H42A0.31070.32580.10190.066*
C430.3391 (6)0.2369 (3)0.1397 (4)0.0666 (14)
H43A0.38120.22630.07910.080*
C440.3194 (6)0.1938 (3)0.2124 (4)0.0676 (16)
H44A0.34510.15350.20110.081*
C450.2610 (6)0.2096 (2)0.3034 (4)0.0602 (13)
H45A0.24860.18000.35450.072*
C460.2204 (5)0.26970 (18)0.3191 (4)0.0453 (10)
H46A0.18140.28020.38100.054*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Bi10.03053 (9)0.03335 (9)0.02336 (9)−0.00432 (6)0.00457 (6)0.00018 (6)
N10.0321 (17)0.0393 (18)0.0307 (19)0.0017 (13)0.0023 (14)0.0009 (14)
N20.0325 (16)0.0342 (16)0.0216 (16)−0.0069 (13)0.0061 (13)0.0022 (13)
N30.0418 (19)0.053 (2)0.052 (2)−0.0026 (16)0.0139 (17)0.0137 (18)
O110.0412 (15)0.0690 (19)0.0247 (15)−0.0184 (14)0.0023 (12)0.0043 (13)
O120.062 (2)0.095 (2)0.0273 (17)−0.0225 (18)0.0102 (15)0.0074 (16)
O130.071 (2)0.105 (3)0.0252 (18)−0.019 (2)−0.0061 (16)0.0155 (17)
O210.0361 (14)0.0410 (14)0.0254 (14)−0.0129 (11)0.0057 (11)0.0031 (11)
O220.0423 (16)0.0582 (18)0.0249 (16)−0.0082 (12)0.0006 (12)0.0097 (12)
O230.0358 (15)0.0568 (18)0.0301 (16)−0.0098 (13)−0.0005 (12)0.0040 (13)
O310.0390 (15)0.0590 (18)0.0429 (18)−0.0015 (13)0.0141 (13)0.0088 (14)
C110.048 (2)0.040 (2)0.026 (2)−0.0058 (17)0.0056 (18)0.0034 (17)
C120.040 (2)0.033 (2)0.025 (2)−0.0022 (16)−0.0009 (16)0.0041 (15)
C130.056 (3)0.049 (3)0.032 (3)−0.005 (2)−0.002 (2)0.0060 (19)
C140.043 (3)0.070 (3)0.052 (3)−0.005 (2)−0.018 (2)0.005 (2)
C150.036 (2)0.072 (3)0.056 (3)−0.005 (2)−0.001 (2)0.004 (3)
C160.038 (2)0.054 (3)0.041 (3)−0.0027 (19)0.0094 (19)0.000 (2)
C210.036 (2)0.0296 (19)0.027 (2)−0.0038 (15)0.0065 (17)−0.0030 (15)
C220.0313 (18)0.0269 (18)0.025 (2)0.0009 (14)0.0069 (15)−0.0014 (15)
C230.0310 (18)0.0309 (19)0.030 (2)0.0008 (15)0.0058 (16)−0.0020 (16)
C240.0295 (19)0.043 (2)0.039 (2)−0.0086 (16)0.0087 (17)−0.0041 (18)
C250.041 (2)0.049 (2)0.035 (2)−0.0106 (18)0.0179 (19)0.0022 (18)
C260.041 (2)0.048 (2)0.025 (2)−0.0090 (18)0.0059 (17)0.0032 (17)
C310.033 (2)0.045 (2)0.048 (3)0.0026 (18)0.008 (2)0.003 (2)
C320.068 (3)0.095 (4)0.064 (4)0.007 (3)0.022 (3)0.037 (3)
C330.082 (4)0.092 (4)0.093 (5)−0.042 (3)0.014 (3)0.005 (4)
C410.0299 (19)0.040 (2)0.029 (2)0.0004 (16)0.0014 (16)−0.0051 (17)
C420.059 (3)0.066 (3)0.042 (3)0.012 (2)0.015 (2)−0.002 (2)
C430.074 (3)0.078 (4)0.048 (3)0.027 (3)0.014 (3)−0.018 (3)
C440.071 (3)0.059 (3)0.060 (4)0.027 (3)−0.007 (3)−0.021 (3)
C450.069 (3)0.046 (3)0.061 (3)0.009 (2)0.005 (3)0.005 (2)
C460.054 (2)0.040 (2)0.041 (2)0.0068 (19)0.011 (2)−0.002 (2)

Geometric parameters (Å, °)

Bi1—C412.245 (4)O31—C311.235 (5)
Bi1—O112.348 (3)C11—C121.483 (5)
Bi1—O212.382 (3)C12—C131.403 (6)
Bi1—N22.488 (3)C13—C141.396 (7)
Bi1—O312.534 (3)C14—C151.360 (7)
Bi1—N12.660 (3)C15—C161.384 (6)
N1—C161.328 (5)C21—C221.499 (5)
N1—C121.338 (5)C22—C231.398 (5)
N2—C261.327 (4)C23—C241.386 (5)
N2—C221.352 (4)C24—C251.368 (5)
N3—C311.313 (5)C25—C261.388 (5)
N3—C331.445 (6)C41—C461.378 (6)
N3—C321.453 (6)C41—C421.382 (5)
O11—C111.264 (5)C42—C431.381 (7)
O12—C111.243 (5)C43—C441.345 (7)
O13—C131.336 (5)C44—C451.374 (7)
O21—C211.269 (4)C45—C461.389 (6)
O22—C211.242 (5)O13—H13A0.84 (3)
O23—C231.342 (4)O23—H23A0.84 (3)
C41—Bi1—O1185.44 (12)N1—C12—C11117.3 (3)
C41—Bi1—O2183.65 (11)C13—C12—C11120.3 (4)
O11—Bi1—O21139.90 (9)O13—C13—C14120.1 (4)
C41—Bi1—N292.01 (11)O13—C13—C12122.3 (4)
O11—Bi1—N274.25 (9)C14—C13—C12117.7 (4)
O21—Bi1—N267.72 (9)C15—C14—C13119.1 (4)
C41—Bi1—O3183.76 (12)C14—C15—C16119.9 (4)
O11—Bi1—O31139.33 (9)N1—C16—C15122.1 (4)
O21—Bi1—O3177.37 (9)O22—C21—O21125.1 (3)
N2—Bi1—O31145.09 (9)O22—C21—C22117.4 (3)
C41—Bi1—N187.62 (11)O21—C21—C22117.5 (3)
O11—Bi1—N164.98 (10)N2—C22—C23121.1 (3)
O21—Bi1—N1152.21 (9)N2—C22—C21117.7 (3)
N2—Bi1—N1139.13 (10)C23—C22—C21121.3 (3)
O31—Bi1—N175.49 (10)O23—C23—C24119.0 (3)
C16—N1—C12118.8 (3)O23—C23—C22122.4 (3)
C16—N1—Bi1127.9 (3)C24—C23—C22118.6 (3)
C12—N1—Bi1112.8 (2)C25—C24—C23119.5 (3)
C26—N2—C22119.6 (3)C24—C25—C26119.3 (3)
C26—N2—Bi1125.0 (2)N2—C26—C25121.9 (3)
C22—N2—Bi1114.9 (2)O31—C31—N3124.7 (4)
C31—N3—C33119.6 (4)C46—C41—C42117.9 (4)
C31—N3—C32121.8 (4)C46—C41—Bi1119.3 (3)
C33—N3—C32118.6 (4)C42—C41—Bi1122.7 (3)
C11—O11—Bi1126.2 (2)C43—C42—C41120.8 (5)
C21—O21—Bi1121.9 (2)C44—C43—C42120.9 (5)
C31—O31—Bi1129.4 (3)C43—C44—C45119.7 (5)
O12—C11—O11122.8 (4)C44—C45—C46120.0 (5)
O12—C11—C12118.7 (3)C41—C46—C45120.7 (4)
O11—C11—C12118.5 (3)O13—H13A—O12147 (4)
N1—C12—C13122.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O13—H13A···O120.84 (3)1.80 (3)2.541 (5)147 (4)
O23—H23A···O220.84 (3)1.79 (3)2.555 (5)150 (3)
O23—H23A···O13i0.84 (3)2.52 (2)2.917 (6)110 (2)

Symmetry codes: (i) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5046).

References

  • Andrews, P. C., Deacon, G. B., Junk, P. C., Kumar, I. & Silberstein, M. (2006). Dalton Trans. pp. 4852–4858. [PubMed]
  • Briand, G. G. & Burford, N. (1999). Chem. Rev.99, 2601–2658. [PubMed]
  • Bruker (2004). SMART, SAINT-Plus, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Callens, E., Burton, A. J., White, A. J. P. & Barrett, A. G. M. (2008). Tetrahedron Lett.49, 3709–3712.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Silvestru, C., Breunig, H. J. & Althaus, H. (1999). Chem. Rev.99, 3277–3327. [PubMed]
  • Stavila, V. & Dikarev, E. V. (2009). J. Organomet. Chem.694, 2956–2964.
  • Stavila, V., Fettinger, J. C. & Whitmire, K. H. (2007). Organometallics, 26, 3321–3328.
  • Stavila, V., Thurston, J. H. & Whitmire, K. H. (2009). Inorg. Chem.48, 6945–6951. [PubMed]
  • Yu, L., Ma, Y.-Q., Liu, R.-C., Wang, G.-C. & Li, J.-S. (2004). Inorg. Chem. Commun.7, 410–411.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography