PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3296.
Published online 2010 November 24. doi:  10.1107/S1600536810048208
PMCID: PMC3011433

2-Amino­anilinium benzoate

Abstract

In the crystal of the title molecular salt, C6H9N2 +·C7H5O2 , the cations and anions are linked by N—H(...)O hydrogen bonds, buiding an R 2 2(9) ring. Futher N—H(...)O hydrogen bonds generate chains, which develop parallel to the a axis through the formation of R 4 3(10) rings.,

Related literature

For the properties of amino compounds, see: Fu et al. (2009 [triangle]); Aminabhavi et al. (1986 [triangle]); Dai & Fu (2008a [triangle],b [triangle]). For hydrogen-bond motifs, see: Etter (1990 [triangle]); Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3296-scheme1.jpg

Experimental

Crystal data

  • C6H9N2 +·C7H5O2
  • M r = 230.26
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3296-efi5.jpg
  • a = 6.0211 (12) Å
  • b = 12.237 (2) Å
  • c = 16.639 (3) Å
  • V = 1226.0 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.30 × 0.15 × 0.10 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.970, T max = 1.000
  • 12656 measured reflections
  • 1638 independent reflections
  • 1133 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.118
  • S = 1.08
  • 1638 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.11 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810048208/dn2626sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048208/dn2626Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Anyang Institute of Technology.

supplementary crystallographic information

Comment

The amino derivatives have found wide range of applications in material science, such as magnetic, fluorescent and dielectric behaviors. And there has been an increased interest in the preparation of amino coordination compound (Aminabhavi et al., 1986; Dai & Fu 2008a; Dai & Fu 2008b; Fu, et al. 2009). As an extension on the structural characterization, we report here the crystal structure of the title compound 2-aminoanilinium benzoate.

The asymmetrical unit of the title compound consists of one benzene-1,2-diamine cation and one benzoic acid anion linked by N-H···O hydrogen bonds buiding a R22(9) ring (Etter, 1990, Bernstein et al., 1995) (Fig.1; Table 1). As expected The carboxyl acid group has protonated one of the amine N atom.

N—H···O hydrogen bonds generate chains which develop parallel to the a axis through the formation of R34(10) ring (Etter, 1990; Bernstein et al., 1995)(Fig. 2; Table 1).

Experimental

A mixture of benzene-1,2-diamine (0.1 mmol) and benzoic acid (0.1 mmol) was dissolved in ethanol (20 ml). The solution was allowed to evaporate to obtain colourless block-shaped crystals of the title compound.

Refinement

All H atoms attached to C atoms and N(NH3) were fixed geometrically and treated as riding with C—H = 0.93 Å and N-H = 0.85Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(N) . H atoms bonded to N(NH2) atom were located in difference Fourier maps and their coordinates were refined using restraints (N-H=1.00 (1)Å; H···H = 1.80 (2) Å) with Uiso(H) = 1.5Ueq(N). In the last cycle of refinement they were treated as riding on the N.

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1.
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. H bonds are shown as dashed lines.
Fig. 2.
Partial packing view of the title compound showing the formation of the chain through the R34(10) rings. H atoms not involved in hydrogen bonding have been omitted for clarity. H bonds are shown as dashed lines. [Symmetry codes: (i) -x-1, y+3/2, -z+3/2; ...

Crystal data

C6H9N2+·C7H5O2F(000) = 488
Mr = 230.26Dx = 1.247 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2805 reflections
a = 6.0211 (12) Åθ = 3.3–27.5°
b = 12.237 (2) ŵ = 0.09 mm1
c = 16.639 (3) ÅT = 298 K
V = 1226.0 (4) Å3Block, colourless
Z = 40.30 × 0.15 × 0.10 mm

Data collection

Rigaku Mercury2 diffractometer1638 independent reflections
Radiation source: fine-focus sealed tube1133 reflections with I > 2σ(I)
graphiteRint = 0.053
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
CCD profile fitting scansh = −7→7
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −15→15
Tmin = 0.970, Tmax = 1.000l = −21→21
12656 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0536P)2 + 0.0477P] where P = (Fo2 + 2Fc2)/3
1638 reflections(Δ/σ)max = 0.002
155 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.7176 (3)0.63438 (15)0.49671 (11)0.0429 (5)
H1A0.83390.61560.52670.064*
H1B0.61710.66790.52720.064*
H1C0.76170.67930.45780.064*
N20.3415 (4)0.65071 (19)0.39767 (14)0.0658 (7)
H2A0.45350.71090.39270.099*
H2B0.21370.64710.35970.099*
C10.4321 (4)0.5481 (2)0.41353 (14)0.0475 (6)
C20.6195 (4)0.53644 (19)0.46122 (13)0.0417 (6)
C30.7065 (5)0.4356 (2)0.47948 (17)0.0601 (8)
H30.83260.43010.51150.072*
C40.6058 (8)0.3428 (2)0.4501 (2)0.0846 (11)
H40.66380.27430.46190.101*
C50.4195 (8)0.3522 (3)0.4032 (2)0.0845 (10)
H50.35110.28950.38360.101*
C60.3325 (6)0.4528 (3)0.38492 (18)0.0706 (9)
H60.20590.45760.35310.085*
O10.8819 (3)0.79093 (13)0.39910 (9)0.0512 (5)
O20.5619 (3)0.87900 (18)0.39486 (13)0.0749 (7)
C70.7644 (4)0.8731 (2)0.38177 (14)0.0450 (6)
C80.8786 (4)0.9670 (2)0.34141 (13)0.0416 (6)
C90.7821 (6)1.0692 (2)0.33900 (17)0.0630 (8)
H90.64271.07990.36180.076*
C100.8903 (8)1.1555 (3)0.3032 (2)0.0858 (11)
H100.82531.22440.30290.103*
C111.0919 (8)1.1402 (3)0.2682 (2)0.0893 (12)
H111.16421.19860.24380.107*
C121.1892 (5)1.0385 (3)0.26864 (17)0.0764 (10)
H121.32541.02780.24350.092*
C131.0847 (4)0.9529 (2)0.30625 (14)0.0535 (7)
H131.15310.88480.30810.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0360 (10)0.0443 (11)0.0485 (11)0.0012 (10)−0.0044 (9)0.0033 (9)
N20.0584 (14)0.0684 (15)0.0706 (15)0.0104 (13)−0.0274 (14)−0.0004 (12)
C10.0447 (14)0.0537 (16)0.0441 (13)−0.0013 (14)−0.0019 (12)−0.0034 (12)
C20.0403 (13)0.0442 (13)0.0405 (12)−0.0028 (13)0.0009 (12)−0.0013 (11)
C30.070 (2)0.0463 (15)0.0638 (17)0.0067 (16)−0.0119 (16)0.0006 (14)
C40.117 (3)0.0464 (17)0.090 (2)0.004 (2)−0.018 (3)−0.0056 (16)
C50.117 (3)0.057 (2)0.080 (2)−0.022 (2)−0.015 (2)−0.0091 (17)
C60.073 (2)0.077 (2)0.0612 (17)−0.0195 (18)−0.0146 (17)−0.0081 (16)
O10.0547 (11)0.0483 (10)0.0506 (10)−0.0027 (9)0.0006 (10)0.0044 (8)
O20.0383 (10)0.1060 (17)0.0804 (14)−0.0014 (11)0.0130 (11)0.0259 (13)
C70.0371 (13)0.0587 (16)0.0393 (13)−0.0023 (14)0.0003 (11)0.0004 (13)
C80.0395 (13)0.0518 (14)0.0334 (11)0.0025 (13)−0.0023 (11)0.0032 (11)
C90.0675 (19)0.0622 (18)0.0592 (16)0.0089 (17)−0.0015 (16)0.0070 (15)
C100.125 (3)0.0573 (18)0.075 (2)−0.001 (2)−0.013 (3)0.0192 (17)
C110.109 (3)0.095 (3)0.063 (2)−0.046 (3)−0.016 (2)0.032 (2)
C120.058 (2)0.117 (3)0.0539 (17)−0.022 (2)0.0012 (15)0.022 (2)
C130.0426 (14)0.0721 (18)0.0458 (14)−0.0039 (15)0.0010 (13)0.0107 (13)

Geometric parameters (Å, °)

N1—C21.461 (3)C6—H60.9300
N1—H1A0.8900O1—C71.263 (3)
N1—H1B0.8900O2—C71.241 (3)
N1—H1C0.8900C7—C81.499 (3)
N2—C11.394 (3)C8—C91.379 (4)
N2—H2A1.0021C8—C131.383 (4)
N2—H2B0.9968C9—C101.376 (5)
C1—C21.387 (4)C9—H90.9300
C1—C61.395 (4)C10—C111.359 (6)
C2—C31.375 (3)C10—H100.9300
C3—C41.377 (4)C11—C121.375 (5)
C3—H30.9300C11—H110.9300
C4—C51.371 (6)C12—C131.373 (4)
C4—H40.9300C12—H120.9300
C5—C61.373 (5)C13—H130.9300
C5—H50.9300
C2—N1—H1A109.5C5—C6—C1120.7 (3)
C2—N1—H1B109.5C5—C6—H6119.7
H1A—N1—H1B109.5C1—C6—H6119.7
C2—N1—H1C109.5O2—C7—O1123.9 (3)
H1A—N1—H1C109.5O2—C7—C8119.0 (3)
H1B—N1—H1C109.5O1—C7—C8117.1 (2)
C1—N2—H2A114.5C9—C8—C13118.7 (3)
C1—N2—H2B112.5C9—C8—C7121.0 (2)
H2A—N2—H2B120.0C13—C8—C7120.3 (2)
C2—C1—N2121.3 (2)C10—C9—C8120.6 (3)
C2—C1—C6117.3 (2)C10—C9—H9119.7
N2—C1—C6121.4 (2)C8—C9—H9119.7
C3—C2—C1121.9 (2)C11—C10—C9120.2 (3)
C3—C2—N1119.6 (2)C11—C10—H10119.9
C1—C2—N1118.4 (2)C9—C10—H10119.9
C2—C3—C4119.6 (3)C10—C11—C12120.2 (3)
C2—C3—H3120.2C10—C11—H11119.9
C4—C3—H3120.2C12—C11—H11119.9
C5—C4—C3119.6 (3)C13—C12—C11119.9 (3)
C5—C4—H4120.2C13—C12—H12120.1
C3—C4—H4120.2C11—C12—H12120.1
C4—C5—C6120.9 (3)C12—C13—C8120.5 (3)
C4—C5—H5119.6C12—C13—H13119.7
C6—C5—H5119.6C8—C13—H13119.7
N2—C1—C2—C3177.9 (2)O1—C7—C8—C9−163.0 (2)
C6—C1—C2—C30.5 (4)O2—C7—C8—C13−162.2 (2)
N2—C1—C2—N11.7 (4)O1—C7—C8—C1316.5 (3)
C6—C1—C2—N1−175.7 (2)C13—C8—C9—C10−0.8 (4)
C1—C2—C3—C4−0.2 (4)C7—C8—C9—C10178.7 (3)
N1—C2—C3—C4176.0 (3)C8—C9—C10—C111.5 (5)
C2—C3—C4—C5−0.3 (5)C9—C10—C11—C12−0.3 (5)
C3—C4—C5—C60.3 (6)C10—C11—C12—C13−1.5 (5)
C4—C5—C6—C10.1 (5)C11—C12—C13—C82.2 (4)
C2—C1—C6—C5−0.5 (4)C9—C8—C13—C12−1.0 (4)
N2—C1—C6—C5−177.8 (3)C7—C8—C13—C12179.5 (2)
O2—C7—C8—C918.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.891.832.699 (3)166
N2—H2A···O21.002.163.093 (3)155
N1—H1B···O1i0.891.942.815 (3)168
N1—H1A···O2ii0.891.902.753 (3)161

Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) x+1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2626).

References

  • Aminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125–128.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Dai, W. & Fu, D.-W. (2008a). Acta Cryst. E64, m1016. [PMC free article] [PubMed]
  • Dai, W. & Fu, D.-W. (2008b). Acta Cryst. E64, m1017. [PMC free article] [PubMed]
  • Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun.12, 994–997.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography