PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3360.
Published online 2010 November 30. doi:  10.1107/S1600536810049470
PMCID: PMC3011430

(E)-N′-(2,4-Dichloro­benzyl­idene)-3-nitro­benzohydrazide

Abstract

The title compound, C14H9Cl2N3O3, was prepared by the reaction of 3-nitro­benzohydrazide with 2,4-dichloro­benzalde­hyde. The mol­ecule adopts an E configuration about the C=N bond. The dihedral angle between the two benzene rings is 4.6 (2)°. In the crystal, the hydrazone mol­ecules are linked through inter­molecular N—H(...)O hydrogen bonds, forming chains along the c axis.

Related literature

For medical applications of hydrazones, see: Ajani et al. (2010 [triangle]); Zhang et al. (2010 [triangle]); Angelusiu et al. (2010 [triangle]). For related structures, see: Huang & Wu (2010 [triangle]); Khaledi et al. (2010 [triangle]); Zhou & Yang (2010 [triangle]); Ji & Lu (2010 [triangle]); Singh & Singh (2010 [triangle]); Ahmad et al. (2010 [triangle]). For similar compounds that we have reported recently, see: Dai & Mao (2010a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3360-scheme1.jpg

Experimental

Crystal data

  • C14H9Cl2N3O3
  • M r = 338.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3360-efi1.jpg
  • a = 12.004 (3) Å
  • b = 14.384 (3) Å
  • c = 8.465 (2) Å
  • β = 96.302 (2)°
  • V = 1452.8 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.46 mm−1
  • T = 298 K
  • 0.20 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.913, T max = 0.921
  • 11555 measured reflections
  • 3163 independent reflections
  • 2128 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.107
  • S = 1.05
  • 3163 reflections
  • 202 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049470/sj5069sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049470/sj5069Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection for financial support (project No. JLCBE07026).

supplementary crystallographic information

Comment

In the last few years, medical applications of a number of hydrazone compounds have been received much attention (Ajani et al., 2010; Zhang et al., 2010; Angelusiu et al., 2010). The structures of several hydrazone derivatives have also been determined (Huang & Wu, 2010; Khaledi et al., 2010; Zhou & Yang, 2010; Ji & Lu, 2010; Singh & Singh, 2010; Ahmad et al., 2010). As a continuation of our work on this area (Dai & Mao, 2010a,b), in this paper, we report the structure of the new derivative EN'-(2,4-dichlorobenzylidene)-3-nitrobenzohydrazide.

In the molecule of the title compound, the dihedral angle between the C1···C6 and C9···C14 benzene rings is 4.6 (2)°. The O2/N3/O3 plane forms a dihedral angle of 8.9 (2)° with the C9···C14 benzene ring. The bond lengths and angles are comparable to those found in the hydrazone compounds cited above. In the crystal structure, the hydrazone molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), to form one-dimensional chains along the c axis, as shown in Fig. 2.

Experimental

The reaction of 3-nitrobenzohydrazide (0.181 g, 1 mmol) with 2,4-dichlorobenzaldehyde (0.174 g, 1 mmol) in 50 ml methanol at room temperature afforded the title compound. Yellow block-shaped single crystals were formed by slow evaporation of the clear solution in air.

Refinement

The amino H atom was located in a difference Fourier map and refined with N—H = 0.90 (1) Å, and Uiso = 0.08 Å2. Other H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atomic numbering.
Fig. 2.
Crystal packing of the title compound, viewed down the b axis. Intermolecular interactions are drawn as dashed lines.

Crystal data

C14H9Cl2N3O3F(000) = 688
Mr = 338.14Dx = 1.546 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2237 reflections
a = 12.004 (3) Åθ = 2.3–24.5°
b = 14.384 (3) ŵ = 0.46 mm1
c = 8.465 (2) ÅT = 298 K
β = 96.302 (2)°Block, yellow
V = 1452.8 (6) Å30.20 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3163 independent reflections
Radiation source: fine-focus sealed tube2128 reflections with I > 2σ(I)
graphiteRint = 0.038
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −15→13
Tmin = 0.913, Tmax = 0.921k = −18→18
11555 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0467P)2 + 0.1033P] where P = (Fo2 + 2Fc2)/3
3163 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.26406 (6)−0.09815 (4)0.11977 (8)0.0651 (2)
Cl20.49631 (6)−0.18532 (5)−0.36654 (9)0.0760 (3)
N10.28128 (14)0.18486 (11)−0.03316 (19)0.0344 (4)
N20.23633 (14)0.25093 (11)0.06051 (18)0.0342 (4)
N30.12644 (17)0.66091 (13)0.0801 (3)0.0542 (5)
O10.20635 (13)0.34676 (9)−0.15308 (16)0.0454 (4)
O20.19086 (19)0.67781 (12)−0.0175 (3)0.0808 (6)
O30.06980 (18)0.71959 (12)0.1368 (3)0.0922 (7)
C10.33504 (17)−0.06183 (14)−0.0373 (3)0.0385 (5)
C20.34878 (16)0.03282 (13)−0.0659 (2)0.0330 (5)
C30.40982 (18)0.05744 (14)−0.1909 (2)0.0394 (5)
H30.42010.1200−0.21280.047*
C40.45528 (18)−0.00914 (16)−0.2829 (2)0.0449 (5)
H40.49730.0084−0.36400.054*
C50.43747 (18)−0.10158 (15)−0.2525 (3)0.0446 (6)
C60.37757 (18)−0.12984 (15)−0.1318 (3)0.0451 (6)
H60.3657−0.1926−0.11350.054*
C70.30075 (17)0.10478 (13)0.0282 (2)0.0353 (5)
H70.28470.09230.13110.042*
C80.20044 (16)0.33100 (13)−0.0112 (2)0.0320 (5)
C90.15054 (16)0.40225 (13)0.0894 (2)0.0296 (4)
C100.16380 (16)0.49489 (13)0.0476 (2)0.0340 (5)
H100.20560.5105−0.03470.041*
C110.11400 (18)0.56310 (14)0.1300 (2)0.0386 (5)
C120.05041 (19)0.54271 (16)0.2516 (3)0.0490 (6)
H120.01730.58980.30540.059*
C130.03713 (19)0.45074 (17)0.2916 (3)0.0477 (6)
H13−0.00560.43560.37320.057*
C140.08693 (16)0.38009 (15)0.2110 (2)0.0376 (5)
H140.07740.31830.23880.045*
H20.231 (2)0.2398 (18)0.1627 (14)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0776 (5)0.0440 (4)0.0797 (5)−0.0040 (3)0.0359 (4)0.0085 (3)
Cl20.0832 (5)0.0620 (4)0.0845 (5)0.0183 (4)0.0174 (4)−0.0351 (4)
N10.0418 (10)0.0307 (9)0.0318 (9)0.0035 (8)0.0095 (8)−0.0038 (7)
N20.0493 (11)0.0294 (9)0.0259 (8)0.0063 (8)0.0126 (8)0.0000 (7)
N30.0544 (14)0.0335 (11)0.0733 (15)0.0013 (10)0.0004 (11)−0.0153 (10)
O10.0735 (11)0.0371 (8)0.0285 (8)0.0118 (7)0.0187 (7)0.0037 (6)
O20.1069 (17)0.0392 (10)0.1022 (16)−0.0029 (10)0.0370 (14)0.0029 (10)
O30.0933 (15)0.0387 (10)0.151 (2)0.0116 (10)0.0411 (14)−0.0234 (12)
C10.0363 (12)0.0334 (11)0.0455 (12)0.0019 (9)0.0034 (10)0.0002 (9)
C20.0334 (11)0.0326 (11)0.0324 (11)0.0044 (9)0.0011 (9)−0.0038 (8)
C30.0489 (14)0.0332 (11)0.0365 (12)0.0037 (10)0.0059 (10)−0.0011 (9)
C40.0486 (14)0.0508 (14)0.0365 (12)0.0040 (11)0.0098 (10)−0.0078 (10)
C50.0425 (13)0.0420 (13)0.0484 (13)0.0102 (10)0.0013 (11)−0.0168 (10)
C60.0474 (14)0.0297 (11)0.0568 (14)0.0037 (10)−0.0002 (12)−0.0072 (10)
C70.0415 (13)0.0348 (11)0.0301 (11)0.0036 (9)0.0068 (9)−0.0008 (8)
C80.0382 (12)0.0286 (10)0.0299 (11)−0.0011 (9)0.0066 (9)−0.0021 (8)
C90.0300 (11)0.0327 (11)0.0258 (10)0.0025 (8)0.0024 (8)−0.0012 (8)
C100.0338 (11)0.0334 (11)0.0351 (11)−0.0003 (9)0.0048 (9)−0.0041 (8)
C110.0376 (12)0.0341 (11)0.0426 (12)0.0050 (9)−0.0017 (10)−0.0076 (9)
C120.0478 (14)0.0534 (15)0.0460 (13)0.0155 (11)0.0054 (11)−0.0160 (11)
C130.0452 (14)0.0649 (16)0.0355 (12)0.0095 (12)0.0155 (10)−0.0011 (11)
C140.0391 (12)0.0430 (12)0.0315 (11)0.0030 (10)0.0070 (9)0.0031 (9)

Geometric parameters (Å, °)

Cl1—C11.736 (2)C4—C51.376 (3)
Cl2—C51.741 (2)C4—H40.9300
N1—C71.275 (2)C5—C61.374 (3)
N1—N21.384 (2)C6—H60.9300
N2—C81.350 (2)C7—H70.9300
N2—H20.889 (10)C8—C91.499 (3)
N3—O31.215 (2)C9—C141.384 (3)
N3—O21.216 (3)C9—C101.392 (3)
N3—C111.481 (3)C10—C111.378 (3)
O1—C81.232 (2)C10—H100.9300
C1—C61.395 (3)C11—C121.379 (3)
C1—C21.396 (3)C12—C131.379 (3)
C2—C31.397 (3)C12—H120.9300
C2—C71.463 (3)C13—C141.395 (3)
C3—C41.383 (3)C13—H130.9300
C3—H30.9300C14—H140.9300
C7—N1—N2116.89 (16)N1—C7—C2118.86 (18)
C8—N2—N1116.96 (15)N1—C7—H7120.6
C8—N2—H2122.3 (17)C2—C7—H7120.6
N1—N2—H2120.7 (17)O1—C8—N2123.05 (17)
O3—N3—O2123.7 (2)O1—C8—C9119.84 (17)
O3—N3—C11117.9 (2)N2—C8—C9117.11 (17)
O2—N3—C11118.37 (19)C14—C9—C10119.82 (18)
C6—C1—C2121.8 (2)C14—C9—C8123.54 (17)
C6—C1—Cl1117.98 (16)C10—C9—C8116.48 (17)
C2—C1—Cl1120.26 (16)C11—C10—C9118.99 (19)
C1—C2—C3117.44 (18)C11—C10—H10120.5
C1—C2—C7122.28 (19)C9—C10—H10120.5
C3—C2—C7120.28 (18)C10—C11—C12122.2 (2)
C4—C3—C2121.5 (2)C10—C11—N3118.0 (2)
C4—C3—H3119.2C12—C11—N3119.8 (2)
C2—C3—H3119.2C11—C12—C13118.4 (2)
C5—C4—C3119.0 (2)C11—C12—H12120.8
C5—C4—H4120.5C13—C12—H12120.8
C3—C4—H4120.5C12—C13—C14120.8 (2)
C6—C5—C4122.0 (2)C12—C13—H13119.6
C6—C5—Cl2119.02 (17)C14—C13—H13119.6
C4—C5—Cl2118.97 (19)C9—C14—C13119.8 (2)
C5—C6—C1118.3 (2)C9—C14—H14120.1
C5—C6—H6120.9C13—C14—H14120.1
C1—C6—H6120.9

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.89 (1)2.04 (2)2.859 (2)152 (2)

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5069).

References

  • Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o1022. [PMC free article] [PubMed]
  • Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem.18, 214–221. [PubMed]
  • Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem.45, 2055–2062. [PubMed]
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dai, C.-H. & Mao, F.-L. (2010a). Acta Cryst. E66, o2942. [PMC free article] [PubMed]
  • Dai, C.-H. & Mao, F.-L. (2010b). Acta Cryst. E66, o3004–o3005. [PMC free article] [PubMed]
  • Huang, H.-T. & Wu, H.-Y. (2010). Acta Cryst. E66, o2729–o2730. [PMC free article] [PubMed]
  • Ji, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514. [PMC free article] [PubMed]
  • Khaledi, H., Alhadi, A. A., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o105–o106.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172. [PMC free article] [PubMed]
  • Zhang, Y.-H., Zhang, L., Liu, L., Guo, J.-X., Wu, D.-L., Xu, G.-C., Wang, X.-H. & Jia, D.-Z. (2010). Inorg. Chim. Acta, 363, 289–293.
  • Zhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o290. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography