PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3079–o3080.
Published online 2010 November 6. doi:  10.1107/S1600536810044569
PMCID: PMC3011422

(1R,4aS,10aR)-1,4a-Dimethyl-N-[(morpholin-4-yl)carbothio­yl]-7-(propan-2-yl)-1,2,3,4,4a,9,10,10a-octa­hydro­phenanthrene-1-carboxamide

Abstract

In the title compound, C25H36N2O2S, the cyclo­hexane and morpholine rings adopt chair conformations. The cyclo­hexene and cyclo­hexane rings form a trans ring junction with the two methyl groups in axial positions. The N—H and C=O bonds in the urea group are anti to each other. The crystal structure is stabilized by inter­molecular N—H(...)O hydrogen bonds.

Related literature

Dehydro­abietic acid is an abietane diterpenic resin acid which can be easily obtained from Pinus resin or commercial disproportionated rosin, see: Halbrook & Lawrence (1966 [triangle]). For the biological activity of dehydro­abietic aid derivatives, see: Rao et al. (2008 [triangle]); Sepulveda et al. (2005 [triangle]); Wada et al. (1985 [triangle]); For the crystal structures of dehydro­abietic acid derivatives, see: Rao et al. (2006 [triangle], 2009 [triangle], 2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3079-scheme1.jpg

Experimental

Crystal data

  • C25H36N2O2S
  • M r = 428.62
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3079-efi1.jpg
  • a = 9.887 (2) Å
  • b = 15.114 (3) Å
  • c = 16.128 (3) Å
  • V = 2410.0 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.16 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Entaf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.954, T max = 0.969
  • 4802 measured reflections
  • 4370 independent reflections
  • 3137 reflections with I > 2σ(I)
  • R int = 0.115
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069
  • wR(F 2) = 0.189
  • S = 1.00
  • 4370 reflections
  • 271 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.29 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1882 Friedel pairs
  • Flack parameter: −0.08 (16)

Data collection: CAD-4 Software (Enraf–Nonius, 1985 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810044569/bq2238sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044569/bq2238Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Jiangsu Province (grant No. BK2008088), the Fundamental Research Foundation of the Central Commonwealth Institute of the Chinese Academy of Forestry (grant No. CAFYBB2008021) and the National Natural Science Foundation of China (grant No. 30800871).

supplementary crystallographic information

Comment

Dehydroabietic acid is an abietane diterpenic resin acid which can be easily obtained from Pinus resin or commercial disproportionated rosin (Halbrook et al., 1966). Dehydroabietic acid is widely used as starting material for design and synthesis of biological compounds (Sepulveda et al., 2005; Rao et al., 2008; Wada et al., 1985). Crystal structure of dehydroabietic acid derivatives such as acid (Rao et al., 2009), amide (Rao et al., 2006), urea (Rao et al., 2010) were widely investigated. In this work, we describe the crystal structure of the acylthiourea derivative of dehydroabietic acid. Its structure is shown in Figure 1. There are four six-membered rings in the molecule, in which the benzene ring form planar (mean deviation = 0.0055 Å), the cyclohexene ring form half-chair and the cyclohexane and morpholine rings form chair configurations, respectively. The cyclohexene and cyclohexane rings form a trans ring junction with two methyl groups in the same side of tricyclo phenanthrene structure. The puckering parameters for the benzene, hexene, hexane and morpholine are [τ = 0.9 °], [(Q) = 0.5384 Å, θ = 48.52 °, [var phi] = 286.4651 °], [(Q) = 0.5530 Å, θ = 176.27 °, [var phi] = 154.5122 °], and [(Q) = 0.5602 Å, θ = 4.25 °, [var phi] = 28.6358 °], respectively. There are three chiral centers in the molecule, they exhibited R–, S– and R– configurations, respectively. The N—H and C=O bonds in the urea group are anti to each other. The crystal structure is stabilized by intermolecular N—H···O hydrogen bonds. The hydrogen bond geometry are listed in Table 1. The packing diagrams of title crystal is shown in Figure 2.

Experimental

50 mmol dehydroabietyl acylthiourea and 50 mmol morpholine were added to 30 ml dichloromethane, the mixture were refluxed for 6 h, white crystals were obtained after the solvent were distilled off. Single crystals were grown from ethanol.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.97–0.98Å and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Figures

Fig. 1.
The title compound with displacement ellipsoids at the 30% probability level.
Fig. 2.
Packing diagrams of title crystal (H atoms omitted for clarity).

Crystal data

C25H36N2O2SDx = 1.181 Mg m3
Mr = 428.62Melting point: 416 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 9.887 (2) Åθ = 9–12°
b = 15.114 (3) ŵ = 0.16 mm1
c = 16.128 (3) ÅT = 293 K
V = 2410.0 (8) Å3Block, white
Z = 40.30 × 0.20 × 0.20 mm
F(000) = 928

Data collection

Entaf–Nonius CAD-4 diffractometer3137 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.115
graphiteθmax = 25.3°, θmin = 1.9°
ω/2θ scansh = −11→0
Absorption correction: ψ scan (North et al., 1968)k = −18→0
Tmin = 0.954, Tmax = 0.969l = −19→19
4802 measured reflections3 standard reflections every 200 reflections
4370 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.189w = 1/[σ2(Fo2) + (0.1P)2 + 1.4P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4370 reflectionsΔρmax = 0.37 e Å3
271 parametersΔρmin = −0.29 e Å3
0 restraintsAbsolute structure: Flack (1983), 1882 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.08 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.37704 (13)0.27732 (8)0.64677 (9)0.0548 (4)
N10.6164 (4)0.2465 (2)0.7135 (2)0.0375 (8)
H1A0.62600.29020.74710.045*
O10.7260 (4)0.1345 (2)0.6499 (3)0.0674 (11)
C10.9067 (5)0.2895 (3)0.7578 (3)0.0512 (12)
H1B0.83190.31240.79020.061*
H1C0.93780.23540.78410.061*
O20.4399 (4)−0.0552 (2)0.7323 (2)0.0628 (10)
N20.4599 (4)0.1318 (2)0.7235 (2)0.0441 (9)
C21.0214 (5)0.3570 (3)0.7579 (3)0.0544 (13)
H2A1.09970.33170.73050.065*
H2B1.04650.37030.81470.065*
C30.9808 (5)0.4423 (3)0.7140 (3)0.0483 (12)
H3A1.05870.48120.71200.058*
H3B0.91150.47150.74660.058*
C40.9273 (4)0.4294 (3)0.6252 (3)0.0385 (10)
C50.8566 (4)0.5146 (3)0.5947 (3)0.0374 (10)
C60.9104 (5)0.5970 (3)0.6155 (3)0.0453 (11)
H6A0.98890.59940.64720.054*
C70.8507 (5)0.6744 (3)0.5907 (3)0.0464 (12)
H7A0.88840.72800.60700.056*
C80.7352 (4)0.6744 (3)0.5417 (3)0.0403 (10)
C90.6837 (5)0.5923 (3)0.5200 (3)0.0425 (11)
H9A0.60710.59050.48660.051*
C100.7401 (4)0.5129 (3)0.5454 (3)0.0374 (10)
C110.6697 (5)0.4284 (3)0.5221 (3)0.0488 (12)
H11A0.65090.42930.46310.059*
H11B0.58380.42560.55100.059*
C120.7511 (5)0.3457 (3)0.5424 (3)0.0445 (11)
H12A0.82030.33650.50060.053*
H12B0.69220.29440.54280.053*
C130.8168 (4)0.3571 (3)0.6274 (3)0.0356 (9)
H13A0.74530.38170.66260.043*
C140.8569 (4)0.2682 (3)0.6697 (3)0.0435 (11)
C150.6686 (5)0.7591 (3)0.5142 (3)0.0500 (12)
H15A0.59320.74250.47790.060*
C160.7624 (6)0.8168 (4)0.4634 (5)0.082 (2)
H16A0.79760.78330.41770.123*
H16B0.83590.83670.49760.123*
H16C0.71340.86700.44270.123*
C170.6084 (7)0.8099 (4)0.5869 (4)0.0810 (19)
H17A0.56610.86300.56700.122*
H17B0.67890.82500.62530.122*
H17C0.54230.77370.61430.122*
C180.9621 (5)0.2146 (3)0.6222 (4)0.0611 (14)
H18A0.98130.16100.65190.092*
H18B1.04360.24870.61680.092*
H18C0.92780.20040.56820.092*
C191.0476 (5)0.4121 (3)0.5659 (4)0.0594 (14)
H19A1.01420.40340.51060.089*
H19B1.09540.36010.58350.089*
H19C1.10770.46200.56680.089*
C200.7293 (5)0.2095 (3)0.6764 (3)0.0438 (11)
C210.4855 (4)0.2135 (3)0.6969 (3)0.0387 (10)
C220.3343 (5)0.0860 (3)0.7021 (4)0.0557 (13)
H22A0.28670.11870.65940.067*
H22B0.27630.08240.75050.067*
C230.3668 (6)−0.0061 (3)0.6713 (3)0.0589 (14)
H23A0.2834−0.03690.65810.071*
H23B0.4202−0.00210.62100.071*
C240.5650 (6)−0.0118 (3)0.7501 (4)0.0636 (15)
H24A0.6194−0.00930.70010.076*
H24B0.6145−0.04580.79110.076*
C250.5432 (5)0.0809 (3)0.7822 (3)0.0542 (13)
H25A0.49840.07850.83570.065*
H25B0.62990.11000.78960.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0510 (7)0.0422 (6)0.0712 (9)0.0040 (6)−0.0122 (7)−0.0034 (6)
N10.0390 (18)0.0300 (16)0.0437 (19)−0.0022 (15)0.0017 (17)−0.0072 (14)
O10.069 (2)0.0348 (17)0.098 (3)−0.0044 (17)0.029 (2)−0.013 (2)
C10.049 (3)0.042 (2)0.062 (3)0.003 (2)−0.009 (2)0.013 (2)
O20.077 (2)0.0393 (17)0.072 (3)−0.0127 (17)0.001 (2)0.0057 (17)
N20.048 (2)0.0376 (19)0.047 (2)−0.0062 (17)0.0031 (19)−0.0024 (17)
C20.046 (3)0.053 (3)0.064 (3)0.000 (2)−0.014 (3)0.010 (2)
C30.040 (3)0.046 (3)0.059 (3)−0.002 (2)−0.012 (2)0.007 (2)
C40.033 (2)0.035 (2)0.047 (3)0.0017 (18)0.0019 (19)0.0043 (19)
C50.035 (2)0.037 (2)0.040 (2)−0.0001 (18)0.0056 (19)0.0028 (18)
C60.041 (3)0.043 (2)0.052 (3)−0.009 (2)−0.007 (2)0.007 (2)
C70.049 (3)0.037 (2)0.053 (3)−0.009 (2)−0.005 (2)0.003 (2)
C80.041 (2)0.043 (2)0.037 (3)−0.002 (2)0.006 (2)0.008 (2)
C90.042 (2)0.048 (3)0.038 (2)0.002 (2)−0.005 (2)0.002 (2)
C100.039 (2)0.036 (2)0.037 (2)−0.0033 (19)−0.001 (2)0.0014 (18)
C110.057 (3)0.046 (2)0.044 (3)−0.003 (2)−0.010 (2)−0.004 (2)
C120.054 (3)0.037 (2)0.042 (3)−0.006 (2)0.000 (2)−0.004 (2)
C130.033 (2)0.032 (2)0.042 (2)0.0029 (18)0.0044 (19)−0.0002 (18)
C140.039 (2)0.035 (2)0.056 (3)0.005 (2)0.000 (2)0.003 (2)
C150.055 (3)0.042 (3)0.053 (3)0.006 (2)−0.006 (2)0.008 (2)
C160.074 (4)0.071 (4)0.102 (5)0.008 (3)0.004 (4)0.041 (4)
C170.092 (4)0.076 (4)0.075 (4)0.038 (4)0.004 (4)−0.013 (3)
C180.048 (3)0.043 (3)0.093 (4)0.006 (2)0.014 (3)−0.001 (3)
C190.042 (3)0.056 (3)0.081 (4)0.000 (2)0.018 (3)0.008 (3)
C200.047 (3)0.033 (2)0.052 (3)0.004 (2)0.002 (2)0.004 (2)
C210.043 (2)0.035 (2)0.038 (2)0.002 (2)0.004 (2)−0.0102 (19)
C220.046 (3)0.049 (3)0.072 (4)−0.012 (2)0.007 (3)0.001 (3)
C230.072 (3)0.045 (3)0.060 (3)−0.017 (3)0.007 (3)−0.002 (2)
C240.070 (3)0.040 (3)0.080 (4)−0.004 (2)−0.004 (3)0.015 (3)
C250.068 (3)0.051 (3)0.043 (3)−0.009 (3)0.000 (3)0.013 (2)

Geometric parameters (Å, °)

S—C211.654 (5)C11—H11A0.9700
N1—C201.384 (6)C11—H11B0.9700
N1—C211.412 (6)C12—C131.526 (6)
N1—H1A0.8600C12—H12A0.9700
O1—C201.213 (5)C12—H12B0.9700
C1—C21.524 (6)C13—C141.559 (6)
C1—C141.539 (7)C13—H13A0.9800
C1—H1B0.9700C14—C181.524 (6)
C1—H1C0.9700C14—C201.546 (6)
O2—C241.429 (6)C15—C161.514 (8)
O2—C231.429 (6)C15—C171.523 (8)
N2—C211.330 (5)C15—H15A0.9800
N2—C221.464 (6)C16—H16A0.9600
N2—C251.472 (6)C16—H16B0.9600
C2—C31.525 (6)C16—H16C0.9600
C2—H2A0.9700C17—H17A0.9600
C2—H2B0.9700C17—H17B0.9600
C3—C41.538 (7)C17—H17C0.9600
C3—H3A0.9700C18—H18A0.9600
C3—H3B0.9700C18—H18B0.9600
C4—C131.545 (6)C18—H18C0.9600
C4—C51.546 (6)C19—H19A0.9600
C4—C191.549 (6)C19—H19B0.9600
C5—C61.395 (6)C19—H19C0.9600
C5—C101.399 (6)C22—C231.513 (7)
C6—C71.370 (6)C22—H22A0.9700
C6—H6A0.9300C22—H22B0.9700
C7—C81.389 (6)C23—H23A0.9700
C7—H7A0.9300C23—H23B0.9700
C8—C91.386 (6)C24—C251.509 (7)
C8—C151.506 (6)C24—H24A0.9700
C9—C101.386 (6)C24—H24B0.9700
C9—H9A0.9300C25—H25A0.9700
C10—C111.502 (6)C25—H25B0.9700
C11—C121.523 (6)
C20—N1—C21121.0 (3)C18—C14—C1110.9 (4)
C20—N1—H1A119.5C18—C14—C20106.7 (4)
C21—N1—H1A119.5C1—C14—C20108.4 (4)
C2—C1—C14112.2 (4)C18—C14—C13114.3 (4)
C2—C1—H1B109.2C1—C14—C13107.8 (3)
C14—C1—H1B109.2C20—C14—C13108.5 (3)
C2—C1—H1C109.2C8—C15—C16112.4 (4)
C14—C1—H1C109.2C8—C15—C17111.8 (4)
H1B—C1—H1C107.9C16—C15—C17111.5 (5)
C24—O2—C23109.7 (4)C8—C15—H15A106.9
C21—N2—C22121.6 (4)C16—C15—H15A106.9
C21—N2—C25125.9 (4)C17—C15—H15A106.9
C22—N2—C25112.3 (4)C15—C16—H16A109.5
C1—C2—C3111.7 (4)C15—C16—H16B109.5
C1—C2—H2A109.3H16A—C16—H16B109.5
C3—C2—H2A109.3C15—C16—H16C109.5
C1—C2—H2B109.3H16A—C16—H16C109.5
C3—C2—H2B109.3H16B—C16—H16C109.5
H2A—C2—H2B107.9C15—C17—H17A109.5
C2—C3—C4114.6 (4)C15—C17—H17B109.5
C2—C3—H3A108.6H17A—C17—H17B109.5
C4—C3—H3A108.6C15—C17—H17C109.5
C2—C3—H3B108.6H17A—C17—H17C109.5
C4—C3—H3B108.6H17B—C17—H17C109.5
H3A—C3—H3B107.6C14—C18—H18A109.5
C3—C4—C13108.2 (4)C14—C18—H18B109.5
C3—C4—C5110.2 (3)H18A—C18—H18B109.5
C13—C4—C5106.0 (3)C14—C18—H18C109.5
C3—C4—C19109.4 (4)H18A—C18—H18C109.5
C13—C4—C19115.9 (4)H18B—C18—H18C109.5
C5—C4—C19106.9 (4)C4—C19—H19A109.5
C6—C5—C10117.8 (4)C4—C19—H19B109.5
C6—C5—C4119.6 (4)H19A—C19—H19B109.5
C10—C5—C4122.5 (4)C4—C19—H19C109.5
C7—C6—C5121.9 (4)H19A—C19—H19C109.5
C7—C6—H6A119.1H19B—C19—H19C109.5
C5—C6—H6A119.1O1—C20—N1120.6 (4)
C6—C7—C8121.4 (4)O1—C20—C14122.2 (4)
C6—C7—H7A119.3N1—C20—C14117.2 (4)
C8—C7—H7A119.3N2—C21—N1116.1 (4)
C9—C8—C7116.4 (4)N2—C21—S125.2 (3)
C9—C8—C15121.7 (4)N1—C21—S118.7 (3)
C7—C8—C15121.9 (4)N2—C22—C23109.4 (4)
C10—C9—C8123.5 (4)N2—C22—H22A109.8
C10—C9—H9A118.2C23—C22—H22A109.8
C8—C9—H9A118.2N2—C22—H22B109.8
C9—C10—C5118.9 (4)C23—C22—H22B109.8
C9—C10—C11118.4 (4)H22A—C22—H22B108.2
C5—C10—C11122.6 (4)O2—C23—C22111.1 (4)
C10—C11—C12113.5 (4)O2—C23—H23A109.4
C10—C11—H11A108.9C22—C23—H23A109.4
C12—C11—H11A108.9O2—C23—H23B109.4
C10—C11—H11B108.9C22—C23—H23B109.4
C12—C11—H11B108.9H23A—C23—H23B108.0
H11A—C11—H11B107.7O2—C24—C25111.8 (4)
C11—C12—C13109.0 (3)O2—C24—H24A109.2
C11—C12—H12A109.9C25—C24—H24A109.2
C13—C12—H12A109.9O2—C24—H24B109.2
C11—C12—H12B109.9C25—C24—H24B109.2
C13—C12—H12B109.9H24A—C24—H24B107.9
H12A—C12—H12B108.3N2—C25—C24110.2 (4)
C12—C13—C4111.2 (4)N2—C25—H25A109.6
C12—C13—C14113.8 (3)C24—C25—H25A109.6
C4—C13—C14116.1 (3)N2—C25—H25B109.6
C12—C13—H13A104.8C24—C25—H25B109.6
C4—C13—H13A104.8H25A—C25—H25B108.1
C14—C13—H13A104.8
C14—C1—C2—C356.3 (6)C2—C1—C14—C1870.6 (5)
C1—C2—C3—C4−54.2 (6)C2—C1—C14—C20−172.5 (4)
C2—C3—C4—C1350.3 (5)C2—C1—C14—C13−55.2 (5)
C2—C3—C4—C5165.9 (4)C12—C13—C14—C1862.4 (5)
C2—C3—C4—C19−76.8 (5)C4—C13—C14—C18−68.6 (5)
C3—C4—C5—C638.4 (5)C12—C13—C14—C1−173.9 (4)
C13—C4—C5—C6155.3 (4)C4—C13—C14—C155.2 (5)
C19—C4—C5—C6−80.5 (5)C12—C13—C14—C20−56.6 (5)
C3—C4—C5—C10−142.6 (4)C4—C13—C14—C20172.5 (4)
C13—C4—C5—C10−25.7 (5)C9—C8—C15—C16−120.9 (5)
C19—C4—C5—C1098.6 (5)C7—C8—C15—C1659.7 (7)
C10—C5—C6—C71.5 (7)C9—C8—C15—C17112.8 (6)
C4—C5—C6—C7−179.4 (4)C7—C8—C15—C17−66.6 (6)
C5—C6—C7—C8−1.6 (7)C21—N1—C20—O1−22.3 (7)
C6—C7—C8—C90.4 (7)C21—N1—C20—C14157.0 (4)
C6—C7—C8—C15179.8 (5)C18—C14—C20—O12.7 (7)
C7—C8—C9—C100.9 (7)C1—C14—C20—O1−116.8 (5)
C15—C8—C9—C10−178.6 (4)C13—C14—C20—O1126.4 (5)
C8—C9—C10—C5−0.9 (7)C18—C14—C20—N1−176.5 (4)
C8—C9—C10—C11176.2 (4)C1—C14—C20—N164.0 (5)
C6—C5—C10—C9−0.3 (6)C13—C14—C20—N1−52.8 (5)
C4—C5—C10—C9−179.4 (4)C22—N2—C21—N1−172.8 (4)
C6—C5—C10—C11−177.3 (4)C25—N2—C21—N113.3 (6)
C4—C5—C10—C113.6 (6)C22—N2—C21—S7.1 (6)
C9—C10—C11—C12171.6 (4)C25—N2—C21—S−166.8 (4)
C5—C10—C11—C12−11.3 (6)C20—N1—C21—N266.4 (5)
C10—C11—C12—C1341.6 (5)C20—N1—C21—S−113.5 (4)
C11—C12—C13—C4−68.1 (5)C21—N2—C22—C23131.5 (4)
C11—C12—C13—C14158.6 (4)C25—N2—C22—C23−53.8 (5)
C3—C4—C13—C12175.6 (4)C24—O2—C23—C22−61.0 (5)
C5—C4—C13—C1257.4 (4)N2—C22—C23—O258.0 (6)
C19—C4—C13—C12−61.1 (5)C23—O2—C24—C2559.5 (6)
C3—C4—C13—C14−52.2 (5)C21—N2—C25—C24−133.2 (5)
C5—C4—C13—C14−170.5 (4)C22—N2—C25—C2452.4 (5)
C19—C4—C13—C1471.1 (5)O2—C24—C25—N2−54.9 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.453.171 (4)142

Symmetry codes: (i) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2238).

References

  • Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Halbrook, N. J. & Lawrence, R. V. (1966). J. Org. Chem.31, 4246–4247.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Rao, X. P., Song, Z. Q., He, L. & Jia, W. H. (2008). Chem. Pharm. Bull.56, 1575–1578. [PubMed]
  • Rao, X.-P., Song, Z.-Q., Radbil, B. & Radbil, A. (2006). Acta Cryst. E62, o5301–o5302.
  • Rao, X.-P., Song, Z.-Q. & Shang, S.-B. (2009). Acta Cryst. E65, o2402. [PMC free article] [PubMed]
  • Rao, X. P., Wu, Y., Song, Z. Q. & Shang, S. B. (2010). J. Chem. Crystallogr.40, 328–331.
  • Sepulveda, B., Astudillo, L., Rodriguez, J., Yanez, T., Theoduloz, C. & Schmeda, G. (2005). Pharm. Res.52, 429–437. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wada, H., Kodato, S., Kawamori, M., Morikawa, T., Nakai, H., Takeda, M., Saito, S., Onoda, Y. & Tamaki, H. (1985). Chem. Pharm. Bull. (Tokyo), 33, 1472–1487. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography