PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3308.
Published online 2010 November 27. doi:  10.1107/S1600536810048385
PMCID: PMC3011421

4,4′-Bipyridine–2-(carb­oxy­methyl­sulfan­yl)pyridine-3-carb­oxy­lic acid (1/1)

Abstract

In the title co-crystal, C10H8N2·C8H7NO4S, the formate group is coplanar with the pyridyl ring of the acid [dihedral angle = 6.2 (7)°], while the carb­oxy­methyl­sulfanyl group makes a C—S—C—C torsion angle of 70.2 (1)° with the pyridine ring. The dihedral angle between the pyridyl rings of the 4,4′-bipyridine mol­ecule is 27.4 (1)°. The acid and the 4,4′-bipyridine mol­ecules are involved in hydrogen bonding via carb­oxy­lic O and pyridyl N atoms. The structure is further consolidated by inter­molecular C—H(...)O hydrogen bonds, generating a three-dimensional network.

Related literature

For related structures, see: Wang & Feng (2010 [triangle]); Zhu et al. (2002 [triangle]); Smith & Sagatys (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3308-scheme1.jpg

Experimental

Crystal data

  • C10H8N2·C8H7NO4S
  • M r = 369.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3308-efi1.jpg
  • a = 9.3684 (3) Å
  • b = 10.3044 (3) Å
  • c = 18.2264 (5) Å
  • β = 106.494 (2)°
  • V = 1687.09 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 296 K
  • 0.41 × 0.25 × 0.10 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.935, T max = 0.978
  • 24834 measured reflections
  • 3927 independent reflections
  • 3106 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.144
  • S = 1.08
  • 3927 reflections
  • 241 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810048385/pv2357sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048385/pv2357Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The crystal structures of a number of mercaptonicotinic derivatives have been reported, such as 2-(carboxymethylsulfanyl)pyridine-3-carboxylic acid monohydrate (Wang et al., 2010), bis(3-carboxypyrid-2-yl)disulfide monohydrate (Zhu et al., 2002) and ammonium 2-mercaptopyridine-3-carboxylate monohydrate (Smith et al., 2003). In an attempt to synthesize a cobalt complex with 2-(carboxymethylsulfanyl)pyridine-3-carboxylic acid and 4,4'-bipyridine, we obtained the title compound, (I), unexpectedly. In this article, we report the crystal structure of (I).

The title compound is composed of 2-(carboxymethylsulfanyl)pyridine-3-carboxylic acid (C8H7NO4S) and 4,4'-bipyridine (C10H8N2) (Fig. 1). In the acid moiety, the formate group is coplanar with the pyridyl ring, while the carboxymethylsulfanyl group is almost vartical to the plane formed by the pyridine ring atoms with torsion angle, C1—S1—C7—C8, 70.2 (1)°. The dihedral angle between the pyridyl rings of the 4,4'-bipyridine molecule is 27.4 (1)°. The acid and the 4,4'-bipyridine molecules are involved in hydrogen bonding via carboxylic O and pyridyl N atoms. The structure is further consolidated by intermolecular hydrogen bonds of type C—H···O (Fig. 2 and Tab. 1).

Experimental

2-(Carboxymethylsulfanyl)pyridine-3-carboxylic acid was prepared according to the literature method (Wang et al., 2010). A mixture of CoCl2.6H2O (0.2379 g, 1.0 mmol), 4,4'-bipyridine (0.0468 g, 0.3 mmol) and 2-(carboxymethylsulfanyl)pyridine-3-carboxylic acid (0.2134 g, 1.0 mmol) was dissolved in 10.0 ml of distilled water and 3.0 ml ethanol at 328 K. The resulting solution was stirred and refluxed under basic condition for 2 h, the mixture was cooled to room temperature and filtered. Single crystals suitable for X-ray diffraction were obtained from the mother liquor by slow evaporation at room temperature for several days.

Refinement

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model with C—H = 0.93 and 0.97 Å for aryl and methylene H-atoms and Uiso(H) = 1.2Ueq(C). The oxygen-bound H-atoms was located in a difference Fourier map and refined with the O—H distance restrained to 0.85 (2) Å and Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
Perspective view of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A unit cell packing of (I); intermolecular hydrogen bonds have been depicted by dashed lines.

Crystal data

C10H8N2·C8H7NO4SF(000) = 768
Mr = 369.40Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7490 reflections
a = 9.3684 (3) Åθ = 2.3–27.7°
b = 10.3044 (3) ŵ = 0.22 mm1
c = 18.2264 (5) ÅT = 296 K
β = 106.494 (2)°Block, colourless
V = 1687.09 (9) Å30.41 × 0.25 × 0.10 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer3927 independent reflections
Radiation source: fine-focus sealed tube3106 reflections with I > 2σ(I)
graphiteRint = 0.028
ω scansθmax = 27.7°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.935, Tmax = 0.978k = −13→13
24834 measured reflectionsl = −23→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
3927 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.27 e Å3
2 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.58161 (5)0.38154 (4)0.14705 (2)0.04516 (16)
O10.80222 (16)0.58013 (13)−0.00541 (8)0.0686 (4)
H1B0.837 (2)0.6539 (17)0.0143 (12)0.082*
O20.72352 (16)0.57771 (12)0.09792 (7)0.0640 (4)
O30.70285 (16)0.13228 (12)0.22294 (9)0.0705 (4)
H3B0.740 (2)0.0553 (17)0.2308 (13)0.085*
O40.49171 (15)0.02161 (13)0.18621 (8)0.0722 (4)
N10.52552 (13)0.21214 (12)0.03258 (7)0.0418 (3)
C10.58945 (15)0.32661 (14)0.05633 (7)0.0368 (3)
C20.65886 (15)0.40173 (13)0.01174 (8)0.0382 (3)
C30.65803 (17)0.35450 (15)−0.05940 (9)0.0439 (4)
H3A0.70200.4022−0.09050.053*
C40.59198 (17)0.23668 (16)−0.08426 (8)0.0472 (4)
H4A0.59060.2035−0.13190.057*
C50.52829 (17)0.17006 (15)−0.03640 (9)0.0453 (4)
H5A0.48420.0904−0.05300.054*
C60.73076 (16)0.52758 (14)0.03952 (8)0.0424 (3)
C70.48104 (17)0.25100 (16)0.17466 (8)0.0467 (4)
H7A0.45080.27940.21870.056*
H7B0.39090.23670.13330.056*
C80.5588 (2)0.12241 (15)0.19413 (9)0.0475 (4)
N2−0.08632 (19)−0.19297 (15)0.05293 (10)0.0635 (4)
N30.16287 (17)0.40694 (14)0.23065 (9)0.0560 (4)
C90.0353 (2)−0.18397 (18)0.11218 (13)0.0652 (5)
H9A0.0884−0.25950.12960.078*
C10−0.1626 (2)−0.0845 (2)0.03031 (12)0.0622 (5)
H10A−0.2482−0.0888−0.01080.075*
C110.08680 (19)−0.07012 (17)0.14907 (10)0.0551 (4)
H11A0.1739−0.06900.18930.066*
C12−0.12119 (17)0.03452 (18)0.06467 (9)0.0529 (4)
H12A−0.17870.10790.04720.064*
C130.00740 (16)0.04348 (15)0.12563 (9)0.0415 (3)
C140.05830 (16)0.16981 (15)0.16269 (8)0.0401 (3)
C150.14430 (19)0.17679 (16)0.23814 (9)0.0500 (4)
H15A0.16830.10180.26750.060*
C160.02397 (18)0.28557 (16)0.12271 (10)0.0513 (4)
H16A−0.03520.28590.07220.062*
C170.0788 (2)0.39998 (17)0.15887 (11)0.0584 (5)
H17A0.05540.47680.13130.070*
C180.19387 (19)0.29589 (19)0.26931 (9)0.0558 (4)
H18A0.25200.29900.32000.067*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0619 (3)0.0338 (2)0.0371 (2)0.00022 (15)0.00974 (18)−0.00146 (13)
O10.0904 (9)0.0499 (7)0.0768 (9)−0.0340 (7)0.0421 (7)−0.0215 (7)
O20.0957 (9)0.0453 (7)0.0505 (7)−0.0223 (6)0.0201 (6)−0.0118 (5)
O30.0620 (8)0.0418 (7)0.0978 (11)0.0049 (5)0.0069 (7)0.0182 (7)
O40.0866 (9)0.0450 (7)0.0837 (9)−0.0169 (6)0.0219 (7)−0.0054 (6)
N10.0473 (7)0.0326 (6)0.0419 (6)−0.0030 (5)0.0066 (5)−0.0008 (5)
C10.0382 (7)0.0311 (7)0.0360 (7)0.0029 (5)0.0021 (5)0.0002 (5)
C20.0377 (7)0.0323 (7)0.0402 (7)0.0007 (5)0.0038 (6)−0.0013 (6)
C30.0503 (8)0.0385 (8)0.0432 (8)−0.0029 (6)0.0136 (7)−0.0021 (6)
C40.0578 (9)0.0420 (9)0.0402 (7)−0.0048 (7)0.0113 (6)−0.0091 (6)
C50.0513 (8)0.0337 (8)0.0446 (8)−0.0048 (6)0.0035 (6)−0.0057 (6)
C60.0441 (7)0.0346 (7)0.0441 (8)−0.0022 (6)0.0053 (6)−0.0012 (6)
C70.0519 (8)0.0475 (9)0.0423 (7)0.0013 (7)0.0159 (6)0.0000 (7)
C80.0648 (10)0.0396 (9)0.0400 (8)−0.0031 (7)0.0180 (7)0.0010 (6)
N20.0739 (10)0.0459 (9)0.0798 (11)−0.0249 (7)0.0365 (8)−0.0189 (8)
N30.0591 (8)0.0457 (8)0.0636 (9)−0.0107 (6)0.0180 (7)−0.0158 (7)
C90.0743 (12)0.0388 (9)0.0883 (14)−0.0044 (8)0.0326 (11)−0.0061 (9)
C100.0542 (10)0.0619 (12)0.0694 (12)−0.0208 (8)0.0157 (9)−0.0180 (10)
C110.0557 (10)0.0412 (9)0.0656 (11)−0.0013 (7)0.0129 (8)−0.0010 (7)
C120.0454 (8)0.0477 (9)0.0611 (10)−0.0055 (7)0.0077 (7)−0.0079 (8)
C130.0412 (7)0.0378 (8)0.0466 (7)−0.0066 (6)0.0141 (6)−0.0018 (6)
C140.0396 (7)0.0361 (8)0.0445 (7)−0.0038 (6)0.0114 (6)−0.0025 (6)
C150.0582 (9)0.0453 (9)0.0437 (8)−0.0038 (7)0.0097 (7)0.0010 (7)
C160.0546 (9)0.0411 (9)0.0513 (8)−0.0014 (7)0.0035 (7)0.0008 (7)
C170.0675 (11)0.0355 (9)0.0692 (11)−0.0010 (7)0.0143 (9)0.0013 (8)
C180.0603 (10)0.0592 (11)0.0447 (8)−0.0069 (8)0.0098 (7)−0.0095 (8)

Geometric parameters (Å, °)

S1—C11.7688 (14)N2—C101.328 (3)
S1—C71.7943 (17)N2—C91.332 (3)
O1—C61.3127 (19)N3—C171.324 (2)
O1—H1B0.864 (16)N3—C181.332 (2)
O2—C61.2023 (19)C9—C111.370 (2)
O3—C81.305 (2)C9—H9A0.9300
O3—H3B0.861 (16)C10—C121.382 (2)
O4—C81.2015 (19)C10—H10A0.9300
N1—C51.3373 (19)C11—C131.388 (2)
N1—C11.3379 (18)C11—H11A0.9300
C1—C21.408 (2)C12—C131.391 (2)
C2—C31.383 (2)C12—H12A0.9300
C2—C61.4827 (19)C13—C141.482 (2)
C3—C41.379 (2)C14—C151.384 (2)
C3—H3A0.9300C14—C161.387 (2)
C4—C51.372 (2)C15—C181.377 (2)
C4—H4A0.9300C15—H15A0.9300
C5—H5A0.9300C16—C171.377 (2)
C7—C81.505 (2)C16—H16A0.9300
C7—H7A0.9700C17—H17A0.9300
C7—H7B0.9700C18—H18A0.9300
C1—S1—C7100.76 (7)C17—N3—C18117.10 (15)
C6—O1—H1B107.7 (15)N2—C9—C11123.95 (18)
C8—O3—H3B108.5 (15)N2—C9—H9A118.0
C5—N1—C1117.62 (13)C11—C9—H9A118.0
N1—C1—C2122.38 (13)N2—C10—C12123.33 (17)
N1—C1—S1116.80 (11)N2—C10—H10A118.3
C2—C1—S1120.81 (11)C12—C10—H10A118.3
C3—C2—C1117.85 (13)C9—C11—C13119.21 (16)
C3—C2—C6120.60 (14)C9—C11—H11A120.4
C1—C2—C6121.55 (13)C13—C11—H11A120.4
C4—C3—C2120.01 (14)C10—C12—C13119.28 (16)
C4—C3—H3A120.0C10—C12—H12A120.4
C2—C3—H3A120.0C13—C12—H12A120.4
C5—C4—C3117.84 (14)C11—C13—C12117.19 (14)
C5—C4—H4A121.1C11—C13—C14121.72 (13)
C3—C4—H4A121.1C12—C13—C14121.08 (14)
N1—C5—C4124.29 (14)C15—C14—C16117.39 (14)
N1—C5—H5A117.9C15—C14—C13121.31 (14)
C4—C5—H5A117.9C16—C14—C13121.29 (13)
O2—C6—O1122.82 (14)C18—C15—C14119.29 (15)
O2—C6—C2122.94 (14)C18—C15—H15A120.4
O1—C6—C2114.24 (13)C14—C15—H15A120.4
C8—C7—S1117.93 (12)C17—C16—C14119.04 (15)
C8—C7—H7A107.8C17—C16—H16A120.5
S1—C7—H7A107.8C14—C16—H16A120.5
C8—C7—H7B107.8N3—C17—C16123.77 (17)
S1—C7—H7B107.8N3—C17—H17A118.1
H7A—C7—H7B107.2C16—C17—H17A118.1
O4—C8—O3124.16 (16)N3—C18—C15123.39 (15)
O4—C8—C7122.06 (17)N3—C18—H18A118.3
O3—C8—C7113.72 (14)C15—C18—H18A118.3
C10—N2—C9117.01 (15)
C5—N1—C1—C2−0.4 (2)C10—N2—C9—C11−1.7 (3)
C5—N1—C1—S1178.95 (11)C9—N2—C10—C120.4 (3)
C7—S1—C1—N1−0.26 (12)N2—C9—C11—C131.7 (3)
C7—S1—C1—C2179.13 (11)N2—C10—C12—C130.7 (3)
N1—C1—C2—C30.8 (2)C9—C11—C13—C12−0.5 (2)
S1—C1—C2—C3−178.52 (11)C9—C11—C13—C14−179.32 (15)
N1—C1—C2—C6−179.22 (12)C10—C12—C13—C11−0.6 (2)
S1—C1—C2—C61.43 (18)C10—C12—C13—C14178.20 (15)
C1—C2—C3—C4−0.7 (2)C11—C13—C14—C15−27.4 (2)
C6—C2—C3—C4179.39 (14)C12—C13—C14—C15153.82 (17)
C2—C3—C4—C50.1 (2)C11—C13—C14—C16151.38 (17)
C1—N1—C5—C4−0.2 (2)C12—C13—C14—C16−27.4 (2)
C3—C4—C5—N10.3 (2)C16—C14—C15—C18−1.3 (2)
C3—C2—C6—O2173.56 (15)C13—C14—C15—C18177.51 (15)
C1—C2—C6—O2−6.4 (2)C15—C14—C16—C171.3 (2)
C3—C2—C6—O1−6.0 (2)C13—C14—C16—C17−177.48 (15)
C1—C2—C6—O1174.06 (14)C18—N3—C17—C16−0.6 (3)
C1—S1—C7—C870.16 (12)C14—C16—C17—N3−0.4 (3)
S1—C7—C8—O4−152.53 (14)C17—N3—C18—C150.6 (3)
S1—C7—C8—O330.22 (19)C14—C15—C18—N30.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1B···N2i0.86 (2)1.79 (2)2.6564 (18)178 (2)
O3—H3B···N3ii0.86 (2)1.82 (2)2.6618 (18)167 (2)
C4—H4A···O4iii0.932.553.213 (2)128
C15—H15A···O2ii0.932.393.0664 (19)130
C18—H18A···o2ii0.932.703.232 (2)117

Symmetry codes: (i) x+1, y+1, z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2357).

References

  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G. & Sagatys, D. S. (2003). Acta Cryst. E59, o540–o541.
  • Wang, X.-J. & Feng, Y.-L. (2010). Acta Cryst. E66, o1298. [PMC free article] [PubMed]
  • Zhu, J. X., Zhao, Y. J., Hong, M. C., Sun, D. F., Shi, Q. & Chao, R. (2002). Chem. Lett. pp. 484–500.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography