PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1550.
Published online 2010 November 13. doi:  10.1107/S1600536810045952
PMCID: PMC3011419

Aqua­(4-nitro­phthalato-κO 1)bis­[2-(1H-pyrazol-3-yl-κN 2)pyridine-κN]­mangan­ese(II) hemihydrate

Abstract

In the title compound, [Mn(C8H3NO6)(C8H7N3)2(H2O)]·0.5H2O, the Mn2+ ion is octa­hedrally coordinated by two 2-(1H-pyrazol-3-yl)pyridine ligands, one 4-nitro­phthalate ligand and one coordinated water mol­ecule leading to an overall MnN4O2 coordination environment. The two 2-(1H-pyrazol-3-yl)pyridine ligands, which deviate from planarity by 0.0187 (2) and 0.0601 (2) Å, make a dihedral angle of 81.90 (6)°. An intra­molecular N—H(...)O hydrogen bond occurs. Inter­molecular π–π stacking inter­actions with a face-to-face separation of 3.61 (1) Å between the 2-(1H-pyrazol-3-yl)pyridine ligands is observed. Additionally, O—H(...)O hydrogen bonding involving the uncoordinated water (which is situated on an inversion center), coordinated water mol­ecules and 2-(1H-pyrazol-3-yl)pyridine ligands leads to a three-dimensional network in the crystal structure.

Related literature

For the use of 4-nitro-phthalic acid for metal-organic frameworks, see: Xu et al. (2009 [triangle]); Guo & Guo (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1550-scheme1.jpg

Experimental

Crystal data

  • [Mn(C8H3NO6)(C8H7N3)2(H2O)]·0.5H2O
  • M r = 581.41
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1550-efi1.jpg
  • a = 10.5996 (7) Å
  • b = 11.2654 (7) Å
  • c = 11.9493 (7) Å
  • α = 96.275 (2)°
  • β = 112.485 (2)°
  • γ = 96.902 (2)°
  • V = 1289.94 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.57 mm−1
  • T = 294 K
  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.935, T max = 0.956
  • 13775 measured reflections
  • 4492 independent reflections
  • 4112 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.107
  • S = 1.00
  • 4492 reflections
  • 364 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045952/im2225sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045952/im2225Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Science Foundation of Beihua University.

supplementary crystallographic information

Comment

The synthesis of metal-organic frameworks (MOFs) has attracted continuous research interest not only because of their appealing structural and topological novelty, but also due to their unusual optical, electronic, magnetic, and catalytic properties, as well as their potential medical application (Xu et al. (2009); Guo & Guo (2007)). Here, we describe the synthesis and structural characterization of the title compound.

Single crystal X-ray diffraction analysis revealed that the asymmetric unit of the title compound, [(Mn(C8H7N3)2(C8H3NO6)(H2O)] × 0.5 H2O, consists of one Mn2+ ion that is octahedrally coordinated by two 2-(1H-pyrazol-3-yl)-pyridine ligands, one 4-nitro-phthalato ligand and one coordinated water molecule leading to an overall MnN4O2 coordination environment (Figure 1). Deviations of the two 2-(1H-pyrazol-3-yl)-pyridine moieties from planarity are 0.0187 (2) and 0.0601 (2) Å, respectively. The dihedral angle between the two 3-(2-pyridyl)-1H-pyrazole planes is 81.90 (6)°. The Mn-N and Mn-O bond distances are in the range of 2.200 (2)—2.359 (2) and 2.126 (2)—2.162 (2) Å, respectively. Intermolecular π-π stacking interactions with a face-to-face separation of 3.61 (1) Å between the 2-(1H-pyrazol-3-yl)-pyridine ligands is observed. Additionally, extensive hydrogen bonding involving solvent water (which are situated at a crystallographic center of inversion), coordinated water molecules and 2-(1H-pyrazol-3-yl)-pyridine ligands leads to a three dimensional network in the crystal structure (Figure 2).

Experimental

A mixture of manganese sulfate hydrate (0.33 mmol, 0.050 g), 2-(1H-pyrazol-3-yl)-pyridine (0.32 mmoL, 0.05 g), and 4-nitrophthalic acid (0.24 mmoL, 0.05 g), gadolinium(III) nitrate pentahydrate (0.12 mmoL, 0.05 g), and 14 ml H2O was sealed in a 25 ml Teflon-lined stainless steel autoclave at 433 K for three days. Pink crystals suitable for the X-ray experiment were obtained after cooling down to room temperature (yield: 76%). Anal. Calc. for C48H40Mn2N14O15: C 49.53, H 3.44, N 16.85%; Found: C 49.36, H 3.32, N 16.72%.

Refinement

All hydrogen atoms bound to carbon were refined using a riding model with C—H = 0.93 Å and Uiso = 1.2Ueq (C). The H atoms of the coordinated water molecule were located from difference density maps and were refined with d(O—H) = 0.83 (2) Å, and with a fixed Uiso of 0.80 Å2. Refinement of the H atoms of lattice water did not result in a reasonable model since there is only 0.5 water situated at a crystallographic center of inversion. Hydrogen positions would therefore have to be split. Hence corresponding hydrogen positions were excluded from the final refinement.

Figures

Fig. 1.
Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
Fig. 2.
Crystal packing of the title compound, displayed with hydrogen bonds as dashed lines.

Crystal data

[Mn(C8H3NO6)(C8H7N3)2(H2O)]·0.5H2OZ = 2
Mr = 581.41F(000) = 594
Triclinic, P1Dx = 1.497 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5996 (7) ÅCell parameters from 4492 reflections
b = 11.2654 (7) Åθ = 1.9–25.0°
c = 11.9493 (7) ŵ = 0.57 mm1
α = 96.275 (2)°T = 294 K
β = 112.485 (2)°Block, pink
γ = 96.902 (2)°0.12 × 0.10 × 0.08 mm
V = 1289.94 (14) Å3

Data collection

Bruker APEXII CCD diffractometer4492 independent reflections
Radiation source: fine-focus sealed tube4112 reflections with I > 2σ(I)
graphiteRint = 0.016
phi and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −12→12
Tmin = 0.935, Tmax = 0.956k = −13→12
13775 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.065P)2 + 0.6953P] where P = (Fo2 + 2Fc2)/3
4492 reflections(Δ/σ)max = 0.001
364 parametersΔρmax = 0.67 e Å3
3 restraintsΔρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.7173 (4)0.2731 (3)0.9226 (3)0.0712 (8)
H10.63430.25680.93230.085*
C20.8448 (4)0.3131 (3)1.0143 (3)0.0697 (8)
H20.86680.32941.09830.084*
C30.9359 (3)0.3247 (2)0.9554 (2)0.0518 (6)
C41.0853 (3)0.3638 (2)1.0005 (2)0.0537 (6)
C51.1703 (4)0.4045 (3)1.1239 (2)0.0695 (8)
H51.13280.40731.18280.083*
C61.3098 (4)0.4403 (3)1.1578 (3)0.0831 (10)
H61.36800.46731.24010.100*
C71.3632 (4)0.4362 (3)1.0692 (3)0.0802 (9)
H71.45760.46071.09030.096*
C81.2730 (3)0.3948 (3)0.9483 (3)0.0670 (7)
H81.30900.39160.88840.080*
C91.3004 (3)0.2422 (3)0.5695 (3)0.0635 (7)
H91.36740.26620.54030.076*
C101.2660 (3)0.1287 (3)0.5905 (3)0.0611 (7)
H101.30370.06040.57860.073*
C111.1618 (2)0.13717 (19)0.63382 (19)0.0406 (4)
C121.0839 (2)0.04615 (18)0.67283 (18)0.0404 (4)
C131.0928 (3)−0.0766 (2)0.6586 (2)0.0526 (6)
H131.1490−0.10490.62170.063*
C141.0177 (3)−0.1549 (2)0.6995 (3)0.0663 (7)
H141.0218−0.23720.69060.080*
C150.9309 (3)0.0111 (2)0.7633 (3)0.0688 (8)
H150.87470.04050.79950.083*
C160.9367 (4)−0.1107 (3)0.7536 (3)0.0761 (8)
H160.8861−0.16200.78340.091*
C170.6605 (2)0.2144 (2)0.5118 (2)0.0513 (6)
C180.5813 (2)0.1929 (2)0.3746 (2)0.0427 (5)
C190.4714 (3)0.0954 (2)0.3232 (2)0.0572 (6)
H190.44380.05230.37460.069*
C200.4030 (3)0.0616 (2)0.1979 (3)0.0619 (7)
H200.3294−0.00340.16390.074*
C210.4462 (2)0.1264 (2)0.1246 (2)0.0545 (6)
C220.5544 (2)0.2235 (2)0.1721 (2)0.0479 (5)
H220.58200.26480.11970.058*
C230.6216 (2)0.25915 (18)0.29779 (19)0.0400 (4)
C240.7320 (2)0.3719 (2)0.3445 (2)0.0462 (5)
Mn10.97367 (3)0.28597 (3)0.71009 (3)0.03701 (12)
N10.7320 (2)0.26121 (19)0.8159 (2)0.0564 (5)
H1A0.66500.23660.74500.068*
N20.8652 (2)0.29291 (17)0.83442 (17)0.0485 (4)
N31.1369 (2)0.35929 (18)0.91298 (18)0.0528 (5)
N41.22077 (19)0.31285 (17)0.59823 (18)0.0474 (4)
H41.22400.38840.59190.057*
N51.13476 (17)0.25018 (15)0.63847 (16)0.0393 (4)
N61.0021 (2)0.08928 (16)0.72337 (18)0.0467 (4)
N70.3749 (3)0.0899 (3)−0.0097 (2)0.0805 (7)
O10.5935 (2)0.2119 (4)0.5746 (2)0.1504 (16)
O20.78795 (15)0.22449 (14)0.54996 (14)0.0475 (4)
O30.7370 (2)0.44475 (15)0.43391 (16)0.0596 (4)
O40.8061 (2)0.38723 (19)0.2870 (2)0.0791 (6)
O50.4122 (3)0.1463 (3)−0.0749 (2)0.1086 (9)
O60.2814 (4)0.0044 (3)−0.0487 (3)0.1654 (18)
O1W0.96188 (16)0.46463 (14)0.66095 (15)0.0479 (4)
O2W0.50000.50000.50000.208 (3)
H1W0.9011 (17)0.454 (3)0.5913 (10)0.080*
H2W1.0347 (14)0.507 (2)0.670 (2)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.097 (2)0.0723 (18)0.0770 (19)0.0202 (16)0.0667 (19)0.0216 (15)
C20.109 (2)0.0717 (18)0.0557 (16)0.0283 (17)0.0556 (18)0.0216 (13)
C30.0855 (18)0.0398 (11)0.0455 (12)0.0208 (11)0.0388 (12)0.0118 (9)
C40.0838 (18)0.0380 (12)0.0446 (12)0.0213 (11)0.0277 (12)0.0100 (9)
C50.106 (2)0.0573 (16)0.0450 (14)0.0253 (15)0.0264 (15)0.0096 (12)
C60.104 (3)0.0694 (19)0.0505 (16)0.0196 (18)0.0035 (17)0.0064 (14)
C70.073 (2)0.076 (2)0.0705 (19)0.0113 (16)0.0083 (16)0.0066 (15)
C80.0655 (17)0.0692 (17)0.0592 (16)0.0113 (14)0.0192 (13)0.0037 (13)
C90.0590 (15)0.0756 (18)0.0797 (18)0.0222 (13)0.0481 (14)0.0230 (14)
C100.0679 (16)0.0625 (16)0.0775 (17)0.0340 (13)0.0465 (14)0.0217 (13)
C110.0430 (11)0.0413 (11)0.0400 (11)0.0145 (9)0.0174 (9)0.0070 (8)
C120.0442 (11)0.0390 (11)0.0347 (10)0.0117 (9)0.0112 (9)0.0057 (8)
C130.0630 (14)0.0435 (12)0.0492 (13)0.0197 (11)0.0175 (11)0.0072 (10)
C140.0842 (19)0.0372 (13)0.0728 (17)0.0156 (12)0.0235 (15)0.0146 (12)
C150.0821 (19)0.0506 (14)0.101 (2)0.0164 (13)0.0608 (17)0.0260 (14)
C160.092 (2)0.0478 (15)0.105 (2)0.0101 (14)0.0540 (19)0.0311 (15)
C170.0418 (12)0.0668 (15)0.0513 (13)0.0064 (10)0.0257 (10)0.0111 (11)
C180.0337 (10)0.0464 (12)0.0515 (12)0.0080 (9)0.0206 (9)0.0084 (9)
C190.0470 (13)0.0583 (14)0.0676 (16)−0.0026 (11)0.0259 (12)0.0176 (12)
C200.0428 (13)0.0561 (15)0.0722 (17)−0.0106 (11)0.0149 (12)0.0028 (12)
C210.0420 (12)0.0584 (14)0.0500 (13)0.0027 (10)0.0089 (10)−0.0010 (11)
C220.0416 (11)0.0532 (13)0.0472 (12)0.0032 (10)0.0170 (10)0.0096 (10)
C230.0338 (10)0.0382 (11)0.0475 (11)0.0056 (8)0.0162 (9)0.0067 (9)
C240.0433 (11)0.0391 (11)0.0504 (12)0.0008 (9)0.0143 (10)0.0085 (10)
Mn10.0428 (2)0.03495 (19)0.03942 (19)0.00804 (13)0.02298 (15)0.00565 (13)
N10.0672 (13)0.0579 (12)0.0593 (12)0.0069 (10)0.0432 (11)0.0088 (9)
N20.0655 (12)0.0437 (10)0.0483 (11)0.0105 (9)0.0356 (10)0.0075 (8)
N30.0663 (13)0.0466 (11)0.0465 (11)0.0141 (9)0.0234 (10)0.0048 (8)
N40.0476 (10)0.0460 (10)0.0576 (11)0.0075 (8)0.0302 (9)0.0124 (8)
N50.0414 (9)0.0379 (9)0.0432 (9)0.0072 (7)0.0221 (8)0.0062 (7)
N60.0541 (11)0.0376 (9)0.0570 (11)0.0102 (8)0.0298 (9)0.0121 (8)
N70.0622 (15)0.0935 (19)0.0578 (15)−0.0044 (14)0.0031 (12)−0.0036 (14)
O10.0515 (13)0.342 (5)0.0589 (13)0.015 (2)0.0337 (11)0.016 (2)
O20.0402 (8)0.0541 (9)0.0470 (8)0.0068 (7)0.0177 (7)0.0041 (7)
O30.0743 (12)0.0413 (9)0.0559 (10)−0.0013 (8)0.0228 (9)0.0036 (8)
O40.0715 (13)0.0731 (13)0.0920 (14)−0.0272 (10)0.0501 (12)−0.0099 (11)
O50.0866 (17)0.167 (3)0.0508 (12)−0.0142 (17)0.0190 (12)0.0042 (14)
O60.160 (3)0.160 (3)0.0776 (18)−0.088 (3)−0.0201 (19)−0.0018 (18)
O1W0.0464 (9)0.0414 (8)0.0532 (9)0.0005 (7)0.0182 (7)0.0109 (7)
O2W0.190 (6)0.278 (8)0.248 (8)0.101 (6)0.165 (6)0.066 (6)

Geometric parameters (Å, °)

C1—N11.338 (3)C15—H150.9300
C1—C21.357 (5)C16—H160.9300
C1—H10.9300C17—O11.216 (3)
C2—C31.398 (4)C17—O21.235 (3)
C2—H20.9300C17—C181.504 (3)
C3—N21.332 (3)C18—C191.393 (3)
C3—C41.456 (4)C18—C231.398 (3)
C4—N31.352 (3)C19—C201.375 (4)
C4—C51.390 (4)C19—H190.9300
C5—C61.370 (5)C20—C211.370 (4)
C5—H50.9300C20—H200.9300
C6—C71.378 (5)C21—C221.378 (3)
C6—H60.9300C21—N71.473 (3)
C7—C81.382 (4)C22—C231.380 (3)
C7—H70.9300C22—H220.9300
C8—N31.334 (4)C23—C241.511 (3)
C8—H80.9300C24—O41.235 (3)
C9—N41.337 (3)C24—O31.253 (3)
C9—C101.364 (4)Mn1—O22.1255 (15)
C9—H90.9300Mn1—O1W2.1619 (15)
C10—C111.396 (3)Mn1—N22.1995 (17)
C10—H100.9300Mn1—N52.2401 (16)
C11—N51.338 (3)Mn1—N62.2861 (18)
C11—C121.465 (3)Mn1—N32.359 (2)
C12—N61.338 (3)N1—N21.339 (3)
C12—C131.393 (3)N1—H1A0.8600
C13—C141.370 (4)N4—N51.347 (2)
C13—H130.9300N4—H40.8600
C14—C161.364 (4)N7—O61.203 (4)
C14—H140.9300N7—O51.203 (4)
C15—N61.334 (3)O1W—H1W0.820 (12)
C15—C161.375 (4)O1W—H2W0.82 (2)
N1—C1—C2108.0 (3)C18—C19—H19119.5
N1—C1—H1126.0C21—C20—C19118.2 (2)
C2—C1—H1126.0C21—C20—H20120.9
C1—C2—C3105.2 (2)C19—C20—H20120.9
C1—C2—H2127.4C20—C21—C22122.3 (2)
C3—C2—H2127.4C20—C21—N7118.6 (2)
N2—C3—C2109.7 (3)C22—C21—N7119.0 (2)
N2—C3—C4117.4 (2)C21—C22—C23119.7 (2)
C2—C3—C4132.9 (2)C21—C22—H22120.2
N3—C4—C5121.6 (3)C23—C22—H22120.2
N3—C4—C3115.1 (2)C22—C23—C18119.03 (19)
C5—C4—C3123.3 (2)C22—C23—C24117.40 (19)
C6—C5—C4119.2 (3)C18—C23—C24123.52 (19)
C6—C5—H5120.4O4—C24—O3125.3 (2)
C4—C5—H5120.4O4—C24—C23116.6 (2)
C5—C6—C7119.5 (3)O3—C24—C23118.0 (2)
C5—C6—H6120.2O2—Mn1—O1W86.45 (6)
C7—C6—H6120.2O2—Mn1—N293.74 (7)
C6—C7—C8118.3 (3)O1W—Mn1—N299.70 (7)
C6—C7—H7120.9O2—Mn1—N5101.41 (6)
C8—C7—H7120.9O1W—Mn1—N595.17 (6)
N3—C8—C7123.3 (3)N2—Mn1—N5159.38 (7)
N3—C8—H8118.3O2—Mn1—N689.68 (7)
C7—C8—H8118.3O1W—Mn1—N6166.14 (7)
N4—C9—C10108.0 (2)N2—Mn1—N693.83 (7)
N4—C9—H9126.0N5—Mn1—N672.55 (6)
C10—C9—H9126.0O2—Mn1—N3164.44 (7)
C9—C10—C11105.0 (2)O1W—Mn1—N394.04 (7)
C9—C10—H10127.5N2—Mn1—N370.82 (8)
C11—C10—H10127.5N5—Mn1—N394.05 (7)
N5—C11—C10110.3 (2)N6—Mn1—N393.24 (7)
N5—C11—C12118.75 (18)C1—N1—N2110.7 (2)
C10—C11—C12131.0 (2)C1—N1—H1A124.6
N6—C12—C13121.9 (2)N2—N1—H1A124.6
N6—C12—C11115.00 (18)C3—N2—N1106.40 (18)
C13—C12—C11123.1 (2)C3—N2—Mn1120.74 (17)
C14—C13—C12119.1 (2)N1—N2—Mn1132.63 (15)
C14—C13—H13120.5C8—N3—C4118.0 (2)
C12—C13—H13120.5C8—N3—Mn1126.27 (17)
C16—C14—C13119.2 (2)C4—N3—Mn1115.70 (17)
C16—C14—H14120.4C9—N4—N5111.07 (19)
C13—C14—H14120.4C9—N4—H4124.5
N6—C15—C16123.2 (3)N5—N4—H4124.5
N6—C15—H15118.4C11—N5—N4105.65 (16)
C16—C15—H15118.4C11—N5—Mn1116.41 (13)
C14—C16—C15118.9 (3)N4—N5—Mn1137.92 (13)
C14—C16—H16120.6C15—N6—C12117.8 (2)
C15—C16—H16120.6C15—N6—Mn1125.06 (16)
O1—C17—O2125.8 (2)C12—N6—Mn1116.60 (14)
O1—C17—C18117.3 (2)O6—N7—O5123.3 (3)
O2—C17—C18116.67 (19)O6—N7—C21117.6 (3)
C19—C18—C23119.6 (2)O5—N7—C21119.1 (3)
C19—C18—C17117.4 (2)C17—O2—Mn1142.44 (15)
C23—C18—C17122.66 (19)Mn1—O1W—H1W106 (2)
C20—C19—C18121.1 (2)Mn1—O1W—H2W117 (2)
C20—C19—H19119.5H1W—O1W—H2W115 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H2W···O4i0.82 (2)1.80 (2)2.615 (2)171 (3)
N1—H1A···O10.861.862.644 (3)152

Symmetry codes: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2225).

References

  • Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison,Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Guo, M.-L. & Guo, C.-H. (2007). Acta Cryst. C63, m595–m597. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, B.-Y., Xie, T., Lu, S.-J., Xue, B. & Li, W. (2009). Acta Cryst. E65, m856–m857. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography