PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1650.
Published online 2010 November 24. doi:  10.1107/S1600536810046076
PMCID: PMC3011416

[N,N′-Bis(3-meth­oxy-2-oxidobenzyl­idene)cyclo­hexane-1,2-diaminium-κ4 O,O′,O′′,O′′′]tris­(nitrato-κ2 O,O′)europium(III) methanol monosolvate

Abstract

In the title mononuclear salen-type complex, [Eu(NO3)3(C22H26N2O4)]·CH3OH, the EuIII ion is ten-coordinated by three bidentate nitrate counter-ions and one organic salen-type ligand, which acts in a bis-bidentate chelating mode through its phenolate and meth­oxy O atoms. The protonated imine groups are involved in intra­molecular N—H(...)O hydrogen bonds to the phenolate O atomss, emphasizing the zwitterionic nature of the ligand. An O—H(...)O hydrogen bond links the complex and solvent mol­ecules.

Related literature

For the synthesis of the salen-type ligand, see: Mohamed et al. (2003 [triangle]); Aslantaş et al. (2007) [triangle]. For the synthesis of lanthanide complexes with a similar ligand, see: Yang et al. (2006 [triangle], 2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1650-scheme1.jpg

Experimental

Crystal data

  • [Eu(NO3)3(C22H26N2O4)]·CH4O
  • M r = 752.48
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1650-efi1.jpg
  • a = 9.7718 (4) Å
  • b = 12.8560 (6) Å
  • c = 13.0567 (6) Å
  • α = 78.798 (1)°
  • β = 68.492 (1)°
  • γ = 81.671 (1)°
  • V = 1492.09 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.18 mm−1
  • T = 291 K
  • 0.40 × 0.22 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.476, T max = 0.670
  • 8377 measured reflections
  • 5185 independent reflections
  • 4683 reflections with I > 2σ(I)
  • R int = 0.011

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.068
  • S = 1.02
  • 5185 reflections
  • 390 parameters
  • H-atom parameters constrained
  • Δρmax = 0.76 e Å−3
  • Δρmin = −0.72 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046076/gk2295sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046076/gk2295Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (Nos. 20872030 and 20972043), Heilongjiang Province (Nos. 2009RFXXG201, GC09A402 and 2010 t d03) and Heilongjiang University.

supplementary crystallographic information

Comment

We present here the crystal structure of the title compound. As shown in Fig. 1, the Eu(III) ion is ten-coordinated by three bidentate nitrate counterions and one ligand that utilizes two hydroxyl oxygen atoms and two methoxy oxygen atoms, while the nitrogen atoms remain protonated (Yang et al., 2006, 2008). The Eu—O bond lengths are in the range of 2.493 (3)–2.604 (3) Å. See Yang et al. 2006 and Yang et al. (2008) for the synthesis of lanthanide complex with N,N'-bis(5-bromo-3-methoxysalicylidene)phenylene-1,2-cyclohexanediamine ligand.

Experimental

To a CH2Cl2 solution (5 ml) of H2L (0.0368 g, 0.1 mmol) under stirring was slowly added a MeCN (5 ml)/MeOH (5 ml) solution of Eu(NO3)3˙6H2O (0.0446 g, 0.1 mmol) at room temperature. The diethyl ether was allowed to diffuse slowly into the filtrate at room temperature. The light yellow crystals were obtained within one week. [(Eu(H2L)(NO3)3]ĊH3OH Elemental Anal. Calc. for C23H30N5O14Eu: C, 36.71; H, 4.02; N, 9.31 %, Found: C, 36.78; H, 4.11; N, 9.32 wt%.

Refinement

All H atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93-0.97 Å , N-H = 0.86 Å, O-H = 0.85 and Uiso(H) = 1.2 Ueq(C, N) or Uiso(H) = 1.5 Ueq(O, Cmethyl).

Figures

Fig. 1.
The molecular structure of the title compound, showing 40% probability displacement ellipsoids.

Crystal data

[Eu(NO3)3(C22H26N2O4)]·CH4OZ = 2
Mr = 752.48F(000) = 756
Triclinic, P1Dx = 1.675 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7718 (4) ÅCell parameters from 21234 reflections
b = 12.8560 (6) Åθ = 2.5–28.3°
c = 13.0567 (6) ŵ = 2.18 mm1
α = 78.798 (1)°T = 291 K
β = 68.492 (1)°Block, colorless
γ = 81.671 (1)°0.40 × 0.22 × 0.20 mm
V = 1492.09 (12) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer5185 independent reflections
Radiation source: fine-focus sealed tube4683 reflections with I > 2σ(I)
graphiteRint = 0.011
ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −10→11
Tmin = 0.476, Tmax = 0.670k = −14→15
8377 measured reflectionsl = 0→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0397P)2 + 0.6408P] where P = (Fo2 + 2Fc2)/3
5185 reflections(Δ/σ)max = 0.002
390 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = −0.72 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Eu10.334321 (18)0.769873 (11)0.296926 (12)0.04613 (7)
O10.2712 (3)0.64308 (17)0.45525 (18)0.0583 (6)
O20.2513 (3)0.83055 (17)0.5057 (2)0.0604 (6)
O30.4470 (3)0.60529 (17)0.24850 (18)0.0577 (6)
O40.5486 (3)0.77389 (17)0.10733 (18)0.0545 (6)
O50.5635 (3)0.7515 (2)0.3459 (2)0.0717 (7)
O60.6825 (5)0.8845 (3)0.3390 (4)0.1204 (15)
O70.4880 (3)0.9107 (2)0.2920 (2)0.0691 (7)
O80.1193 (4)0.9066 (3)0.3312 (2)0.0882 (10)
O90.0929 (4)1.0474 (3)0.2154 (3)0.0978 (11)
O100.2917 (3)0.9440 (2)0.1769 (3)0.0772 (8)
O110.1063 (4)0.6753 (3)0.3153 (3)0.0897 (10)
O120.0405 (4)0.6683 (3)0.1759 (3)0.1056 (12)
O130.2334 (3)0.7438 (2)0.1540 (2)0.0750 (8)
N10.2408 (3)0.4421 (2)0.5122 (2)0.0457 (6)
H1N0.25680.49750.46180.055*
N20.4602 (3)0.4004 (2)0.3056 (2)0.0462 (6)
H2N0.42720.46350.32040.055*
N30.5814 (4)0.8503 (3)0.3258 (3)0.0734 (10)
N40.1652 (4)0.9683 (2)0.2404 (3)0.0624 (8)
N50.1231 (4)0.6948 (3)0.2153 (3)0.0671 (9)
C10.2144 (3)0.7496 (2)0.5949 (3)0.0440 (7)
C20.1654 (4)0.7602 (3)0.7053 (3)0.0505 (8)
H20.15610.82680.72610.061*
C30.1291 (4)0.6694 (3)0.7874 (3)0.0568 (9)
H30.09490.67660.86240.068*
C40.1438 (4)0.5718 (3)0.7579 (3)0.0505 (8)
H40.12010.51270.81290.061*
C50.1950 (3)0.5590 (2)0.6442 (2)0.0410 (7)
C60.2288 (3)0.6498 (2)0.5614 (2)0.0424 (7)
C70.2065 (3)0.4573 (2)0.6140 (2)0.0433 (7)
H70.18860.39860.67000.052*
C80.2548 (3)0.3397 (2)0.4746 (3)0.0426 (7)
H80.23020.28480.54070.051*
C90.1478 (4)0.3382 (3)0.4160 (3)0.0567 (9)
H9A0.16800.39280.35090.068*
H9B0.04780.35320.46550.068*
C100.1627 (4)0.2281 (3)0.3806 (4)0.0680 (10)
H10A0.13240.17480.44650.082*
H10B0.09770.22910.33920.082*
C110.3190 (4)0.1984 (3)0.3094 (3)0.0595 (9)
H11A0.34420.24570.23880.071*
H11B0.32600.12650.29430.071*
C120.4284 (4)0.2050 (3)0.3651 (3)0.0527 (8)
H12A0.52770.19140.31380.063*
H12B0.41230.15020.42990.063*
C130.4150 (3)0.3129 (2)0.4009 (3)0.0447 (7)
H130.47840.30870.44510.054*
C140.5425 (3)0.3944 (3)0.2032 (3)0.0473 (7)
H140.57300.32750.18170.057*
C150.5883 (3)0.4856 (3)0.1224 (3)0.0463 (7)
C160.6903 (4)0.4733 (3)0.0152 (3)0.0574 (9)
H160.71880.4057−0.00460.069*
C170.7467 (4)0.5591 (3)−0.0591 (3)0.0615 (9)
H170.81480.5496−0.12890.074*
C180.7038 (4)0.6623 (3)−0.0320 (3)0.0568 (9)
H180.74490.7205−0.08330.068*
C190.6014 (4)0.6770 (3)0.0700 (3)0.0471 (7)
C200.5417 (4)0.5890 (3)0.1506 (3)0.0460 (7)
C210.6066 (5)0.8667 (3)0.0304 (4)0.0790 (13)
H21A0.71190.86180.01040.119*
H21B0.56430.92910.06460.119*
H21C0.58230.8713−0.03540.119*
C220.2283 (5)0.9369 (3)0.5309 (4)0.0775 (12)
H22A0.12640.95170.57400.116*
H22B0.25480.98640.46280.116*
H22C0.28860.94390.57270.116*
O1M0.3110 (9)0.8258 (6)−0.0896 (5)0.190 (3)
H1O0.30980.7939−0.02580.285*
C2M0.204 (2)0.9063 (7)−0.0741 (11)0.303 (11)
H2MA0.18790.9313−0.14310.363*
H2MB0.23910.9638−0.05550.363*
H2MC0.11210.8885−0.01710.454*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Eu10.05387 (12)0.03330 (10)0.03868 (10)−0.00222 (7)−0.00491 (7)0.00021 (6)
O10.0848 (18)0.0388 (12)0.0358 (12)−0.0081 (11)−0.0029 (12)−0.0032 (9)
O20.0812 (18)0.0363 (12)0.0516 (14)−0.0032 (11)−0.0097 (13)−0.0063 (10)
O30.0671 (15)0.0384 (12)0.0412 (12)−0.0019 (11)0.0092 (11)−0.0029 (10)
O40.0574 (14)0.0414 (12)0.0456 (13)−0.0078 (10)−0.0013 (11)0.0068 (10)
O50.0819 (19)0.0623 (17)0.0714 (18)−0.0032 (14)−0.0359 (16)0.0056 (14)
O60.136 (3)0.121 (3)0.136 (3)−0.057 (3)−0.091 (3)0.027 (3)
O70.0823 (19)0.0531 (15)0.0707 (17)−0.0138 (14)−0.0300 (16)0.0060 (13)
O80.085 (2)0.090 (2)0.0584 (17)0.0272 (17)−0.0053 (16)−0.0025 (16)
O90.105 (3)0.076 (2)0.097 (2)0.0413 (19)−0.037 (2)−0.0086 (17)
O100.0685 (18)0.0566 (16)0.081 (2)0.0073 (14)−0.0117 (16)0.0106 (14)
O110.089 (2)0.112 (3)0.0550 (18)−0.0422 (19)−0.0033 (16)0.0015 (17)
O120.092 (2)0.138 (3)0.095 (3)−0.055 (2)−0.018 (2)−0.033 (2)
O130.0728 (18)0.092 (2)0.0536 (16)−0.0344 (16)−0.0083 (14)−0.0040 (14)
N10.0498 (15)0.0358 (13)0.0431 (15)−0.0063 (11)−0.0094 (12)0.0018 (11)
N20.0430 (15)0.0362 (13)0.0502 (16)−0.0009 (11)−0.0060 (12)−0.0074 (11)
N30.086 (3)0.077 (2)0.059 (2)−0.023 (2)−0.032 (2)0.0085 (18)
N40.075 (2)0.0479 (17)0.063 (2)0.0108 (16)−0.0255 (18)−0.0141 (15)
N50.067 (2)0.066 (2)0.061 (2)−0.0219 (17)−0.0061 (18)−0.0137 (16)
C10.0397 (17)0.0422 (17)0.0463 (18)−0.0026 (13)−0.0117 (14)−0.0052 (14)
C20.0482 (19)0.0532 (19)0.051 (2)0.0022 (15)−0.0163 (16)−0.0171 (16)
C30.059 (2)0.070 (2)0.0387 (18)−0.0025 (18)−0.0134 (16)−0.0120 (17)
C40.0498 (19)0.058 (2)0.0388 (17)−0.0090 (15)−0.0123 (15)0.0011 (15)
C50.0355 (16)0.0433 (16)0.0389 (16)−0.0029 (13)−0.0090 (13)−0.0023 (13)
C60.0381 (16)0.0440 (17)0.0391 (16)−0.0029 (13)−0.0071 (13)−0.0053 (13)
C70.0385 (16)0.0468 (18)0.0374 (16)−0.0062 (13)−0.0082 (13)0.0022 (13)
C80.0455 (17)0.0353 (15)0.0413 (17)−0.0070 (13)−0.0111 (14)0.0023 (13)
C90.0453 (19)0.063 (2)0.058 (2)−0.0027 (16)−0.0167 (17)−0.0048 (17)
C100.061 (2)0.073 (3)0.081 (3)−0.019 (2)−0.030 (2)−0.016 (2)
C110.068 (2)0.051 (2)0.065 (2)−0.0102 (17)−0.0254 (19)−0.0117 (17)
C120.055 (2)0.0382 (17)0.060 (2)−0.0003 (15)−0.0181 (17)−0.0044 (15)
C130.0435 (17)0.0397 (16)0.0484 (18)−0.0045 (13)−0.0156 (14)−0.0006 (13)
C140.0428 (18)0.0460 (18)0.0505 (19)−0.0011 (14)−0.0125 (15)−0.0107 (15)
C150.0415 (17)0.0490 (18)0.0417 (17)0.0014 (14)−0.0074 (14)−0.0094 (14)
C160.054 (2)0.064 (2)0.0452 (19)0.0036 (17)−0.0063 (16)−0.0146 (17)
C170.054 (2)0.078 (3)0.0376 (18)0.0034 (19)−0.0008 (16)−0.0121 (18)
C180.049 (2)0.068 (2)0.0409 (18)−0.0081 (17)−0.0058 (15)0.0029 (16)
C190.0440 (18)0.0487 (18)0.0402 (17)−0.0019 (14)−0.0079 (14)−0.0016 (14)
C200.0439 (18)0.0467 (18)0.0389 (17)−0.0031 (14)−0.0070 (14)−0.0020 (14)
C210.088 (3)0.049 (2)0.066 (3)−0.015 (2)0.004 (2)0.0148 (19)
C220.106 (3)0.0391 (19)0.074 (3)−0.003 (2)−0.015 (2)−0.0109 (18)
O1M0.290 (9)0.176 (6)0.106 (4)−0.019 (6)−0.063 (5)−0.038 (4)
C2M0.67 (3)0.119 (7)0.301 (15)−0.125 (12)−0.39 (2)0.051 (8)

Geometric parameters (Å, °)

Eu1—O12.315 (2)C5—C71.415 (4)
Eu1—O32.329 (2)C5—C61.415 (4)
Eu1—O72.492 (3)C7—H70.9300
Eu1—O82.500 (3)C8—C91.509 (5)
Eu1—O132.501 (3)C8—C131.537 (4)
Eu1—O52.513 (3)C8—H80.9800
Eu1—O102.547 (3)C9—C101.544 (5)
Eu1—O42.588 (2)C9—H9A0.9700
Eu1—O112.603 (3)C9—H9B0.9700
Eu1—O22.778 (2)C10—C111.506 (5)
Eu1—N32.930 (4)C10—H10A0.9700
Eu1—N42.954 (3)C10—H10B0.9700
O1—C61.310 (4)C11—C121.516 (5)
O2—C11.378 (4)C11—H11A0.9700
O2—C221.436 (4)C11—H11B0.9700
O3—C201.309 (4)C12—C131.521 (4)
O4—C191.386 (4)C12—H12A0.9700
O4—C211.438 (4)C12—H12B0.9700
O5—N31.271 (4)C13—H130.9800
O6—N31.216 (5)C14—C151.419 (5)
O7—N31.260 (4)C14—H140.9300
O8—N41.259 (4)C15—C161.413 (5)
O9—N41.214 (4)C15—C201.416 (4)
O10—N41.245 (4)C16—C171.352 (5)
O11—N51.233 (4)C16—H160.9300
O12—N51.219 (5)C17—C181.405 (5)
O13—N51.252 (4)C17—H170.9300
N1—C71.293 (4)C18—C191.370 (5)
N1—C81.464 (4)C18—H180.9300
N1—H1N0.8600C19—C201.416 (4)
N2—C141.293 (4)C21—H21A0.9600
N2—C131.485 (4)C21—H21B0.9600
N2—H2N0.8600C21—H21C0.9600
C1—C21.370 (4)C22—H22A0.9600
C1—C61.406 (4)C22—H22B0.9600
C2—C31.411 (5)C22—H22C0.9600
C2—H20.9300O1M—C2M1.346 (15)
C3—C41.355 (5)O1M—H1O0.8506
C3—H30.9300C2M—H2MA0.9600
C4—C51.418 (4)C2M—H2MB0.9599
C4—H40.9300C2M—H2MC0.9600
O1—Eu1—O371.40 (8)O11—N5—Eu160.2 (2)
O1—Eu1—O7117.10 (9)O13—N5—Eu155.6 (2)
O3—Eu1—O7119.72 (9)C2—C1—O2126.3 (3)
O1—Eu1—O8104.34 (9)C2—C1—C6121.3 (3)
O3—Eu1—O8151.65 (12)O2—C1—C6112.3 (3)
O7—Eu1—O887.60 (11)C1—C2—C3119.6 (3)
O1—Eu1—O13113.51 (9)C1—C2—H2120.2
O3—Eu1—O1376.75 (10)C3—C2—H2120.2
O7—Eu1—O13129.39 (9)C4—C3—C2120.6 (3)
O8—Eu1—O1379.81 (11)C4—C3—H3119.7
O1—Eu1—O579.38 (9)C2—C3—H3119.7
O3—Eu1—O576.72 (9)C3—C4—C5120.7 (3)
O7—Eu1—O550.82 (9)C3—C4—H4119.6
O8—Eu1—O5130.97 (11)C5—C4—H4119.6
O13—Eu1—O5144.46 (10)C7—C5—C6120.5 (3)
O1—Eu1—O10154.01 (9)C7—C5—C4120.4 (3)
O3—Eu1—O10130.94 (9)C6—C5—C4119.0 (3)
O7—Eu1—O1067.06 (10)O1—C6—C1119.7 (3)
O8—Eu1—O1049.69 (10)O1—C6—C5121.6 (3)
O13—Eu1—O1067.59 (10)C1—C6—C5118.7 (3)
O5—Eu1—O10115.53 (9)N1—C7—C5123.1 (3)
O1—Eu1—O4132.42 (8)N1—C7—H7118.5
O3—Eu1—O463.86 (7)C5—C7—H7118.5
O7—Eu1—O474.94 (9)N1—C8—C9111.3 (3)
O8—Eu1—O4122.65 (8)N1—C8—C13110.4 (2)
O13—Eu1—O471.69 (8)C9—C8—C13111.8 (3)
O5—Eu1—O475.58 (9)N1—C8—H8107.7
O10—Eu1—O473.42 (8)C9—C8—H8107.7
O1—Eu1—O1168.80 (10)C13—C8—H8107.7
O3—Eu1—O1179.36 (11)C8—C9—C10109.9 (3)
O7—Eu1—O11160.81 (11)C8—C9—H9A109.7
O8—Eu1—O1173.22 (12)C10—C9—H9A109.7
O13—Eu1—O1148.66 (9)C8—C9—H9B109.7
O5—Eu1—O11144.90 (10)C10—C9—H9B109.7
O10—Eu1—O1199.54 (11)H9A—C9—H9B108.2
O4—Eu1—O11115.63 (9)C11—C10—C9111.5 (3)
O1—Eu1—O260.11 (7)C11—C10—H10A109.3
O3—Eu1—O2126.21 (8)C9—C10—H10A109.3
O7—Eu1—O269.33 (8)C11—C10—H10B109.3
O8—Eu1—O267.85 (9)C9—C10—H10B109.3
O13—Eu1—O2142.49 (9)H10A—C10—H10B108.0
O5—Eu1—O273.00 (9)C10—C11—C12112.1 (3)
O10—Eu1—O2102.24 (9)C10—C11—H11A109.2
O4—Eu1—O2142.38 (8)C12—C11—H11A109.2
O11—Eu1—O2101.98 (9)C10—C11—H11B109.2
O1—Eu1—N398.64 (9)C12—C11—H11B109.2
O3—Eu1—N398.70 (11)H11A—C11—H11B107.9
O7—Eu1—N325.25 (9)C11—C12—C13112.5 (3)
O8—Eu1—N3109.63 (12)C11—C12—H12A109.1
O13—Eu1—N3143.40 (9)C13—C12—H12A109.1
O5—Eu1—N325.57 (9)C11—C12—H12B109.1
O10—Eu1—N391.20 (10)C13—C12—H12B109.1
O4—Eu1—N373.81 (9)H12A—C12—H12B107.8
O11—Eu1—N3167.32 (10)N2—C13—C12113.2 (3)
O2—Eu1—N368.89 (9)N2—C13—C8108.9 (2)
O1—Eu1—N4129.29 (9)C12—C13—C8109.6 (3)
O3—Eu1—N4146.89 (9)N2—C13—H13108.3
O7—Eu1—N477.08 (9)C12—C13—H13108.3
O8—Eu1—N424.95 (9)C8—C13—H13108.3
O13—Eu1—N471.13 (10)N2—C14—C15122.7 (3)
O5—Eu1—N4127.65 (9)N2—C14—H14118.6
O10—Eu1—N424.77 (9)C15—C14—H14118.6
O4—Eu1—N497.84 (8)C16—C15—C20119.4 (3)
O11—Eu1—N485.35 (11)C16—C15—C14119.8 (3)
O2—Eu1—N485.53 (8)C20—C15—C14120.7 (3)
N3—Eu1—N4102.20 (10)C17—C16—C15120.6 (3)
C6—O1—Eu1132.23 (19)C17—C16—H16119.7
C1—O2—C22116.9 (3)C15—C16—H16119.7
C1—O2—Eu1115.61 (18)C16—C17—C18120.9 (3)
C22—O2—Eu1127.2 (2)C16—C17—H17119.6
C20—O3—Eu1125.56 (19)C18—C17—H17119.6
C19—O4—C21116.2 (3)C19—C18—C17119.9 (3)
C19—O4—Eu1116.49 (18)C19—C18—H18120.1
C21—O4—Eu1126.9 (2)C17—C18—H18120.1
N3—O5—Eu195.9 (2)C18—C19—O4126.0 (3)
N3—O7—Eu197.2 (2)C18—C19—C20120.9 (3)
N4—O8—Eu198.1 (2)O4—C19—C20113.1 (3)
N4—O10—Eu196.2 (2)O3—C20—C15122.1 (3)
N5—O11—Eu195.5 (2)O3—C20—C19119.5 (3)
N5—O13—Eu1100.0 (2)C15—C20—C19118.4 (3)
C7—N1—C8126.2 (3)C15—C20—Eu1156.5 (2)
C7—N1—H1N116.9C19—C20—Eu184.60 (19)
C8—N1—H1N116.9O4—C21—H21A109.5
C14—N2—C13128.7 (3)O4—C21—H21B109.5
C14—N2—H2N115.6H21A—C21—H21B109.5
C13—N2—H2N115.6O4—C21—H21C109.5
O6—N3—O7122.0 (4)H21A—C21—H21C109.5
O6—N3—O5121.9 (4)H21B—C21—H21C109.5
O7—N3—O5116.1 (3)O2—C22—H22A109.5
O6—N3—Eu1179.0 (4)O2—C22—H22B109.5
O7—N3—Eu157.55 (19)H22A—C22—H22B109.5
O5—N3—Eu158.57 (19)O2—C22—H22C109.5
O9—N4—O10121.2 (4)H22A—C22—H22C109.5
O9—N4—O8123.0 (4)H22B—C22—H22C109.5
O10—N4—O8115.8 (3)C2M—O1M—H1O107.9
O9—N4—Eu1177.3 (3)O1M—C2M—H2MA108.5
O10—N4—Eu158.99 (17)O1M—C2M—H2MB108.6
O8—N4—Eu156.91 (17)H2MA—C2M—H2MB107.6
O12—N5—O11123.7 (4)O1M—C2M—H2MC114.8
O12—N5—O13120.6 (4)H2MA—C2M—H2MC108.6
O11—N5—O13115.8 (4)H2MB—C2M—H2MC108.6
O12—N5—Eu1176.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.861.882.575 (3)137
N2—H2N···O30.861.882.593 (3)139
O1M—H1O···O130.852.182.993 (6)160

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2295).

References

  • Aslantaş, M., Tümer, M., Şahin, E. & Tümer, F. (2007). Acta Cryst. E63, o644–o645.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Mohamed, E. M., Muralidharan, S., Panchanatheswaran, K., Ramesh, R., Low, J. N. & Glidewell, C. (2003). Acta Cryst. C59, o367–o369. [PubMed]
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, X. P., Jones, R. A. & Wong, W. K. (2006). J. Am. Chem. Soc.127, 7686–7687. [PubMed]
  • Yang, X. P., Jones, R. A. & Wong, W. K. (2008). Dalton Trans. pp. 1676–1678. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography