PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3348.
Published online 2010 November 27. doi:  10.1107/S1600536810048713
PMCID: PMC3011415

4-Eth­oxy­anilinium bromide

Abstract

The title compound, C8H12NO+·Br, is built up from roughly planar (r.m.s. deviation for the non-H atoms = 0.062 Å) protonated 4-eth­oxy­anilimium cations and Br anions. In the crystal, the cations and anions are linked by N—H(...)Br and N—H(...)(Br,Br) hydrogen bonds, generating (100) sheets. Very weak C—H(...)π inter­actions may also help to stabilize the crystal structure.

Related literature

For a related structure containing the same cation, see: Fu (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3348-scheme1.jpg

Experimental

Crystal data

  • C8H12NO+·Br
  • M r = 218.09
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3348-efi1.jpg
  • a = 11.842 (2) Å
  • b = 6.5263 (13) Å
  • c = 12.488 (3) Å
  • β = 96.44 (3)°
  • V = 959.0 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.23 mm−1
  • T = 298 K
  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.237, T max = 0.429
  • 9286 measured reflections
  • 2200 independent reflections
  • 1579 reflections with I > 2σ(I)
  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.173
  • S = 1.11
  • 2200 reflections
  • 100 parameters
  • H-atom parameters constrained
  • Δρmax = 1.55 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810048713/hb5753sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048713/hb5753Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful for financial support from RiZhao Polytechnic.

supplementary crystallographic information

Comment

The crystal structure of 4-ethoxyanilinium together with perchlorate is known (Fu, 2009).

The asymmetric unit of the title compound consists of an almost planar protonated 4-ethoxyanilimium cation with the mean deviation of 0.0618 A from the plane formed by its non-hydrogen atoms and a Br- anion (Fig.1). The N—H···Br hydrogen bonding with the N—Br distance from 3.324 (5)Å to 3.375 (4) Å, make great contribution to the stability of the crystal structure and link the cations and anions into chains along b axis. The C—H···π interactions with the C···Cg1 distances of C7—H7A···Cg1 3.674 (8)Å and C8—H8B···Cg1 3.677 (8) Å, respectively, (Cg1 is the centroid of benzene ring) also help stable crystal structure.

Experimental

Colorless prisms of the title compound were obtained by slow evaporation at room temperature of an ethanol solution of equimolar amounts of 4-ethoxybenzenamine and hydrobromic acid (47% w/w).

Refinement

Positional parameters of all the H atoms for C/N atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.5Ueq(N).

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
A view of the packing of the title compound, stacking along the c axis. Dashed lines indicate hydrogen bonds.

Crystal data

C8H12NO+·BrF(000) = 440
Mr = 218.09Dx = 1.510 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3858 reflections
a = 11.842 (2) Åθ = 3.1–27.7°
b = 6.5263 (13) ŵ = 4.23 mm1
c = 12.488 (3) ÅT = 298 K
β = 96.44 (3)°Prism, colourless
V = 959.0 (3) Å30.40 × 0.30 × 0.20 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer2200 independent reflections
Radiation source: fine-focus sealed tube1579 reflections with I > 2σ(I)
graphiteRint = 0.073
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = −15→15
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −8→8
Tmin = 0.237, Tmax = 0.429l = −16→16
9286 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.11w = 1/[σ2(Fo2) + (0.0748P)2 + 1.0824P] where P = (Fo2 + 2Fc2)/3
2200 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 1.55 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.01352 (5)0.76484 (8)0.12594 (4)0.0493 (3)
O10.5504 (4)0.2634 (6)0.0985 (5)0.0665 (14)
N10.0856 (4)0.2654 (7)0.1354 (4)0.0514 (12)
H1B0.06710.36130.18100.077*
H1C0.06320.14340.15680.077*
H1D0.05160.29210.06970.077*
C60.4385 (6)0.2722 (9)0.1145 (6)0.0575 (16)
C40.2549 (5)0.1252 (9)0.0666 (5)0.0551 (15)
H4A0.20870.03010.02740.066*
C30.2087 (5)0.2643 (7)0.1331 (5)0.0458 (13)
C50.3688 (5)0.1288 (10)0.0589 (5)0.0608 (17)
H5A0.40010.03320.01560.073*
C10.3918 (6)0.4084 (9)0.1824 (6)0.0640 (18)
H1A0.43800.50230.22250.077*
C80.7385 (6)0.3844 (11)0.1062 (6)0.073 (2)
H8A0.79060.48800.13550.109*
H8B0.73150.39070.02890.109*
H8C0.76650.25190.12960.109*
C20.2756 (6)0.4042 (10)0.1902 (5)0.0630 (17)
H2A0.24380.49720.23460.076*
C70.6253 (6)0.4193 (11)0.1441 (6)0.075 (2)
H7A0.63140.41310.22210.089*
H7B0.59650.55340.12130.089*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0600 (4)0.0431 (4)0.0460 (4)−0.0070 (3)0.0119 (3)−0.0002 (2)
O10.046 (2)0.064 (3)0.090 (4)−0.0075 (19)0.010 (2)−0.017 (2)
N10.043 (3)0.061 (3)0.050 (3)−0.007 (2)0.009 (2)0.000 (2)
C60.050 (4)0.056 (4)0.068 (4)−0.004 (3)0.012 (3)−0.002 (3)
C40.045 (3)0.055 (3)0.067 (4)−0.011 (3)0.016 (3)−0.019 (3)
C30.045 (3)0.044 (3)0.049 (3)0.002 (2)0.010 (2)−0.002 (2)
C50.048 (4)0.059 (4)0.077 (5)−0.007 (3)0.016 (3)−0.025 (3)
C10.052 (4)0.064 (4)0.077 (5)−0.010 (3)0.009 (3)−0.027 (3)
C80.053 (4)0.083 (5)0.082 (5)−0.014 (4)0.006 (4)0.013 (4)
C20.061 (4)0.061 (4)0.068 (4)0.002 (3)0.011 (3)−0.021 (3)
C70.060 (5)0.074 (5)0.088 (6)−0.021 (4)−0.001 (4)0.002 (4)

Geometric parameters (Å, °)

O1—C61.363 (9)C3—C21.358 (8)
O1—C71.426 (7)C5—H5A0.9300
N1—C31.461 (8)C1—C21.390 (9)
N1—H1B0.8900C1—H1A0.9300
N1—H1C0.8900C8—C71.489 (9)
N1—H1D0.8900C8—H8A0.9600
C6—C51.382 (9)C8—H8B0.9600
C6—C11.385 (9)C8—H8C0.9600
C4—C51.362 (8)C2—H2A0.9300
C4—C31.384 (7)C7—H7A0.9700
C4—H4A0.9300C7—H7B0.9700
C6—O1—C7118.9 (5)C6—C1—C2119.8 (6)
C3—N1—H1B109.5C6—C1—H1A120.1
C3—N1—H1C109.5C2—C1—H1A120.1
H1B—N1—H1C109.5C7—C8—H8A109.5
C3—N1—H1D109.5C7—C8—H8B109.5
H1B—N1—H1D109.5H8A—C8—H8B109.5
H1C—N1—H1D109.5C7—C8—H8C109.5
O1—C6—C5115.7 (6)H8A—C8—H8C109.5
O1—C6—C1125.3 (6)H8B—C8—H8C109.5
C5—C6—C1119.0 (6)C3—C2—C1120.0 (6)
C5—C4—C3119.5 (5)C3—C2—H2A120.0
C5—C4—H4A120.3C1—C2—H2A120.0
C3—C4—H4A120.3O1—C7—C8107.8 (6)
C2—C3—C4120.6 (6)O1—C7—H7A110.1
C2—C3—N1120.8 (5)C8—C7—H7A110.1
C4—C3—N1118.5 (5)O1—C7—H7B110.1
C4—C5—C6121.1 (6)C8—C7—H7B110.1
C4—C5—H5A119.5H7A—C7—H7B108.5
C6—C5—H5A119.5
C7—O1—C6—C5173.5 (6)O1—C6—C1—C2178.9 (7)
C7—O1—C6—C1−7.8 (10)C5—C6—C1—C2−2.6 (11)
C5—C4—C3—C20.3 (10)C4—C3—C2—C1−0.1 (10)
C5—C4—C3—N1176.6 (6)N1—C3—C2—C1−176.3 (6)
C3—C4—C5—C6−1.6 (10)C6—C1—C2—C31.3 (11)
O1—C6—C5—C4−178.6 (6)C6—O1—C7—C8−174.7 (6)
C1—C6—C5—C42.7 (11)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1B···Br10.892.783.368 (4)125
N1—H1B···Br1i0.892.763.324 (5)122
N1—H1C···Br1ii0.892.563.375 (4)153
N1—H1D···Br1iii0.892.513.348 (5)158
C7—H7A···Cg1iv0.973.013.674 (8)127
C8—H8B···Cg1v0.962.963.677 (8)132

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, y−1, z; (iii) −x, −y+1, −z; (iv) −x+1, y+1/2, −z+1/2; (v) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5753).

References

  • Fu, X. (2009). Acta Cryst. E65, o2345. [PMC free article] [PubMed]
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography