PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1574.
Published online 2010 November 13. doi:  10.1107/S1600536810046210
PMCID: PMC3011413

catena-Poly[[(2,2′-bipyridine)­nickel(II)]-μ-2,4′-oxydibenzoato]

Abstract

In the title compound, [Ni(C14H8O5)(C10H8N2)]n, the NiII atom is six-coordinated in a slightly distorted octa­hedral geometry by four O atoms from two chelating carboxyl­ate groups of symmetry-related 2,4′-oxydibenzoate anions and by two N atoms from a 2,2′-bipyridine ligand. The NiII atoms are bridged by the 2,4′-oxydibenzoate anions, resulting in the formation of helical chains parallel to [010] with a repeating unit of 15.039 (2) Å.

Related literature

For background to multicarboxyl­ate ligands, see: Liu et al. (2008 [triangle]); Yang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1574-scheme1.jpg

Experimental

Crystal data

  • [Ni(C14H8O5)(C10H8N2)]
  • M r = 471.10
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1574-efi1.jpg
  • a = 8.061 (1) Å
  • b = 15.039 (2) Å
  • c = 17.847 (5) Å
  • β = 99.464 (3)°
  • V = 2134.1 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.95 mm−1
  • T = 293 K
  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.764, T max = 0.833
  • 13096 measured reflections
  • 4938 independent reflections
  • 3475 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.094
  • S = 1.04
  • 4938 reflections
  • 289 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046210/wm2416sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046210/wm2416Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Dr Li Bin and Tian Lei for their help during the experiments.

supplementary crystallographic information

Comment

Semi-rigid V-shaped multicarboxylate moieties with two benzene rings containing a central nonmetallic fragment (C, O, or S atom) are excellent ligands since they can freely twist around the nonmetallic atom to meet the requirements of the coordination geometries of metal atoms in the assembly process (Liu et al., 2008; Yang et al., 2009). In view of the above point, we chose 2,4'-oxydibenzoate along with nitrogen-containing auxiliary ligands to construct new metal coordination polymers. The title compound, (I), was synthesized by the hydrothermal reaction of 2,4'-oxybis(benzoic acid) with 2,2-bipyridine and nickel chloride hexahydrate.

The asymmetric unit of (I) consists of one NiII ion, one 2,2'-bipyridine ligand and one 2,4'-oxydibenzoate anion. The central NiII ion exhibits an octahedral NiN2O4 environment defined by two chelating carboxylate groups of symmetry-related 2,4'-oxydibenzoate ligands and by one 2,2-bipyridine molecule (Fig. 1). The Ni—O distances range from 2.0459 (19) to 2.1673 (15) Å and the Ni—N distances from 2.0260 (17) and 2.0412 (18) Å. The 2,4'-oxydibenzoate anions acts as a µ2-ligand with its two carboxylate groups bridging two NiII ions to form an infinite one-dimensional helical chain running parallel to [010] (Fig. 2). The repeating unit of 15.039 (2) Å of the chains corresponds to the lattice parameter b.

Experimental

A mixture of NiCl2.6H2O (0.238 g, 1 mmol), 2,4'-oxybis(benzoic acid) (0.258 g, 1 mmol), NaOH (0.08 g, 2 mmol), 2,2'-bipyridine (0.156 g,1 mmol) and distilled water (15 ml) was heated to 433 K for 96 h in a 25 ml stainless steel reactor with a Teflon liner. Green block-like crystals were obtained with 42% yield based on Ni.

Refinement

Hydrogen atoms were included in calculated positions and refined on their parent atoms with C—H distances of 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The coordination environment of the NiII atom with displacement parameters drawn at the 40% probability level. All hydrogen atoms have been omitted for clarity. [Symmetry code A: (i) -x+1, y+1/2, -z+3/2].
Fig. 2.
The helical chain (space-filling representation) in (I) extending parallel to [010].

Crystal data

[Ni(C14H8O5)(C10H8N2)]F(000) = 968
Mr = 471.10Dx = 1.466 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 3464 reflections
a = 8.061 (1) Åθ = 2.3–24.4°
b = 15.039 (2) ŵ = 0.95 mm1
c = 17.847 (5) ÅT = 293 K
β = 99.464 (3)°Block, green
V = 2134.1 (6) Å30.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer4938 independent reflections
Radiation source: fine-focus sealed tube3475 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 27.6°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −10→5
Tmin = 0.764, Tmax = 0.833k = −18→19
13096 measured reflectionsl = −22→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0451P)2 + 0.1348P] where P = (Fo2 + 2Fc2)/3
4938 reflections(Δ/σ)max = 0.002
289 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.68282 (3)0.376038 (17)0.855723 (14)0.04554 (11)
O30.26452 (19)−0.09960 (9)0.91468 (8)0.0506 (4)
O40.31673 (18)−0.13651 (9)0.76522 (8)0.0506 (4)
O20.45649 (19)0.30889 (9)0.86917 (8)0.0537 (4)
C10.5405 (3)0.23738 (14)0.87422 (11)0.0477 (5)
O50.09217 (19)−0.11077 (10)0.68204 (8)0.0556 (4)
C130.1600 (3)−0.12592 (12)0.74953 (12)0.0428 (5)
O10.69556 (18)0.23953 (9)0.87013 (9)0.0552 (4)
C50.3211 (3)−0.01512 (13)0.90085 (10)0.0441 (5)
C120.0473 (3)−0.13366 (12)0.80753 (11)0.0419 (5)
C70.4606 (3)0.14996 (13)0.88414 (11)0.0459 (5)
N20.6059 (2)0.50501 (11)0.85985 (10)0.0496 (4)
C60.2878 (3)0.13983 (14)0.87544 (13)0.0525 (5)
H60.21850.18910.86410.063*
C190.6367 (3)0.54269 (13)0.92942 (12)0.0475 (5)
C11−0.1211 (3)−0.15605 (15)0.78357 (13)0.0538 (5)
H11−0.1607−0.16260.73190.065*
C200.5772 (3)0.62678 (14)0.94207 (14)0.0585 (6)
H200.59920.65200.99030.070*
C30.4924 (3)−0.00607 (14)0.90999 (12)0.0511 (5)
H30.5614−0.05530.92220.061*
C80.0992 (3)−0.12165 (12)0.88548 (11)0.0428 (5)
C40.2171 (3)0.05733 (14)0.88340 (13)0.0528 (5)
H40.10090.05080.87710.063*
C20.5622 (3)0.07580 (14)0.90102 (11)0.0491 (5)
H20.67840.08150.90630.059*
C9−0.0083 (3)−0.13424 (14)0.93671 (13)0.0546 (6)
H90.0290−0.12560.98830.066*
C180.7357 (3)0.48691 (13)0.98899 (11)0.0469 (5)
C170.7938 (3)0.51503 (15)1.06268 (13)0.0629 (7)
H170.76990.57201.07810.075*
N10.7676 (2)0.40440 (11)0.96637 (9)0.0468 (4)
C230.5176 (3)0.55082 (16)0.80230 (13)0.0628 (6)
H230.49680.52500.75430.075*
C220.4567 (4)0.63476 (16)0.81178 (16)0.0698 (7)
H220.39700.66550.77080.084*
C210.4857 (3)0.67254 (16)0.88283 (16)0.0669 (7)
H210.44340.72870.89070.080*
C28−0.2301 (3)−0.16874 (17)0.83440 (15)0.0661 (7)
H28−0.3419−0.18330.81710.079*
C10−0.1728 (3)−0.15981 (17)0.91097 (15)0.0665 (7)
H10−0.2448−0.17100.94560.080*
C140.8592 (3)0.34967 (16)1.01506 (13)0.0585 (6)
H140.88190.29290.99870.070*
C150.9221 (3)0.37365 (17)1.08905 (14)0.0673 (7)
H150.98620.33411.12190.081*
C160.8876 (3)0.45709 (18)1.11271 (14)0.0707 (7)
H160.92710.47481.16240.085*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.05637 (19)0.04095 (16)0.04131 (16)−0.00815 (12)0.01396 (12)−0.00735 (11)
O30.0553 (9)0.0445 (8)0.0490 (8)−0.0074 (7)0.0002 (7)0.0088 (6)
O40.0466 (9)0.0593 (9)0.0471 (8)0.0024 (7)0.0111 (7)0.0057 (7)
O20.0630 (10)0.0426 (8)0.0575 (9)−0.0063 (7)0.0160 (8)−0.0051 (7)
C10.0598 (14)0.0461 (12)0.0383 (11)−0.0088 (11)0.0116 (10)−0.0080 (9)
O50.0581 (9)0.0679 (10)0.0424 (8)0.0184 (8)0.0125 (7)0.0156 (7)
C130.0500 (13)0.0337 (10)0.0452 (11)0.0051 (9)0.0095 (9)0.0031 (9)
O10.0592 (10)0.0444 (8)0.0648 (10)−0.0096 (7)0.0185 (8)−0.0105 (7)
C50.0549 (13)0.0409 (11)0.0359 (10)−0.0065 (9)0.0057 (9)0.0005 (8)
C120.0463 (12)0.0368 (10)0.0434 (11)0.0003 (9)0.0092 (9)0.0044 (8)
C70.0558 (13)0.0436 (11)0.0394 (11)−0.0088 (10)0.0109 (10)−0.0056 (9)
N20.0651 (12)0.0432 (10)0.0446 (10)−0.0053 (9)0.0206 (9)0.0007 (8)
C60.0554 (14)0.0424 (12)0.0609 (14)0.0011 (10)0.0129 (11)−0.0002 (10)
C190.0591 (13)0.0380 (11)0.0510 (12)−0.0134 (10)0.0255 (10)−0.0060 (9)
C110.0521 (13)0.0535 (13)0.0550 (13)−0.0055 (11)0.0060 (11)0.0034 (11)
C200.0708 (16)0.0427 (12)0.0689 (15)−0.0146 (11)0.0322 (13)−0.0088 (11)
C30.0533 (13)0.0472 (12)0.0513 (12)0.0007 (10)0.0042 (11)0.0039 (10)
C80.0481 (12)0.0340 (10)0.0464 (11)−0.0018 (9)0.0082 (9)0.0056 (8)
C40.0484 (13)0.0482 (12)0.0622 (13)−0.0048 (10)0.0106 (11)0.0001 (10)
C20.0462 (12)0.0532 (13)0.0468 (12)−0.0051 (10)0.0048 (10)−0.0022 (10)
C90.0691 (16)0.0515 (13)0.0458 (12)0.0029 (11)0.0174 (11)0.0056 (10)
C180.0570 (13)0.0422 (11)0.0452 (11)−0.0183 (10)0.0194 (10)−0.0066 (9)
C170.0842 (18)0.0508 (13)0.0553 (14)−0.0278 (13)0.0166 (13)−0.0153 (11)
N10.0578 (11)0.0419 (9)0.0431 (9)−0.0083 (8)0.0152 (8)−0.0044 (8)
C230.0838 (18)0.0583 (14)0.0496 (13)0.0027 (13)0.0204 (12)0.0066 (11)
C220.0818 (18)0.0579 (15)0.0749 (18)0.0059 (13)0.0287 (15)0.0217 (13)
C210.0783 (18)0.0431 (13)0.0880 (19)−0.0015 (12)0.0398 (15)0.0053 (13)
C280.0503 (14)0.0683 (16)0.0805 (18)−0.0098 (12)0.0136 (13)0.0153 (14)
C100.0590 (16)0.0743 (16)0.0727 (17)0.0038 (13)0.0303 (13)0.0192 (14)
C140.0684 (16)0.0548 (13)0.0527 (13)−0.0021 (12)0.0109 (12)−0.0020 (11)
C150.0689 (17)0.0711 (17)0.0571 (14)−0.0144 (14)−0.0036 (13)0.0055 (12)
C160.0867 (19)0.0711 (17)0.0506 (14)−0.0345 (15)0.0008 (13)−0.0056 (13)

Geometric parameters (Å, °)

Ni1—N12.0260 (17)C11—C281.376 (3)
Ni1—N22.0412 (18)C11—H110.9300
Ni1—O5i2.0459 (19)C20—C211.371 (3)
Ni1—O12.0694 (16)C20—H200.9300
Ni1—O22.1331 (18)C3—C21.374 (3)
Ni1—O4i2.1673 (15)C3—H30.9300
O3—C51.386 (2)C8—C91.373 (3)
O3—C81.389 (3)C4—H40.9300
O4—C131.258 (3)C2—H20.9300
O4—Ni1ii2.1673 (15)C9—C101.384 (3)
O2—C11.266 (2)C9—H90.9300
C1—O11.264 (3)C18—N11.343 (3)
C1—C71.487 (3)C18—C171.388 (3)
O5—C131.259 (2)C17—C161.381 (3)
O5—Ni1ii2.0459 (19)C17—H170.9300
C13—C121.490 (3)N1—C141.329 (3)
C13—Ni1ii2.433 (2)C23—C221.375 (3)
C5—C31.370 (3)C23—H230.9300
C5—C41.379 (3)C22—C211.374 (4)
C12—C111.396 (3)C22—H220.9300
C12—C81.397 (3)C21—H210.9300
C7—C61.384 (3)C28—C101.375 (3)
C7—C21.387 (3)C28—H280.9300
N2—C231.340 (3)C10—H100.9300
N2—C191.350 (2)C14—C151.382 (3)
C6—C41.383 (3)C14—H140.9300
C6—H60.9300C15—C161.367 (3)
C19—C201.384 (3)C15—H150.9300
C19—C181.480 (3)C16—H160.9300
N1—Ni1—N279.66 (7)C7—C6—H6119.6
N1—Ni1—O5i97.20 (7)N2—C19—C20121.2 (2)
N2—Ni1—O5i102.16 (7)N2—C19—C18114.72 (17)
N1—Ni1—O194.92 (6)C20—C19—C18124.1 (2)
N2—Ni1—O1161.32 (7)C28—C11—C12121.7 (2)
O5i—Ni1—O196.24 (6)C28—C11—H11119.1
N1—Ni1—O298.50 (6)C12—C11—H11119.1
N2—Ni1—O2100.10 (7)C21—C20—C19119.3 (2)
O5i—Ni1—O2154.69 (6)C21—C20—H20120.3
O1—Ni1—O262.76 (6)C19—C20—H20120.3
N1—Ni1—O4i158.99 (7)C5—C3—C2119.9 (2)
N2—Ni1—O4i99.73 (6)C5—C3—H3120.0
O5i—Ni1—O4i62.20 (6)C2—C3—H3120.0
O1—Ni1—O4i91.67 (6)C9—C8—O3117.07 (19)
O2—Ni1—O4i102.26 (6)C9—C8—C12121.8 (2)
N1—Ni1—C198.02 (7)O3—C8—C12121.12 (19)
N2—Ni1—C1131.15 (8)C5—C4—C6119.1 (2)
O5i—Ni1—C1126.32 (7)C5—C4—H4120.4
O1—Ni1—C131.37 (7)C6—C4—H4120.4
O2—Ni1—C131.38 (6)C3—C2—C7120.5 (2)
O4i—Ni1—C197.98 (6)C3—C2—H2119.8
N1—Ni1—C13i128.32 (8)C7—C2—H2119.8
N2—Ni1—C13i103.84 (7)C8—C9—C10119.5 (2)
O5i—Ni1—C13i31.15 (6)C8—C9—H9120.2
O1—Ni1—C13i93.58 (6)C10—C9—H9120.2
O2—Ni1—C13i130.16 (6)N1—C18—C17121.0 (2)
O4i—Ni1—C13i31.08 (6)N1—C18—C19114.53 (17)
C1—Ni1—C13i114.35 (7)C17—C18—C19124.5 (2)
C5—O3—C8118.40 (15)C16—C17—C18119.0 (2)
C13—O4—Ni1ii86.18 (12)C16—C17—H17120.5
C1—O2—Ni187.30 (13)C18—C17—H17120.5
O1—C1—O2119.76 (19)C14—N1—C18119.28 (19)
O1—C1—C7118.8 (2)C14—N1—Ni1124.68 (15)
O2—C1—C7121.5 (2)C18—N1—Ni1115.90 (14)
O1—C1—Ni158.44 (11)N2—C23—C22122.2 (2)
O2—C1—Ni161.32 (11)N2—C23—H23118.9
C7—C1—Ni1177.03 (17)C22—C23—H23118.9
C13—O5—Ni1ii91.63 (13)C21—C22—C23118.9 (2)
O4—C13—O5119.9 (2)C21—C22—H22120.5
O4—C13—C12122.70 (18)C23—C22—H22120.5
O5—C13—C12117.40 (18)C20—C21—C22119.5 (2)
O4—C13—Ni1ii62.74 (11)C20—C21—H21120.3
O5—C13—Ni1ii57.21 (11)C22—C21—H21120.3
C12—C13—Ni1ii172.74 (15)C10—C28—C11119.7 (2)
C1—O1—Ni190.19 (13)C10—C28—H28120.2
C3—C5—C4120.79 (19)C11—C28—H28120.2
C3—C5—O3115.13 (18)C28—C10—C9120.2 (2)
C4—C5—O3123.98 (19)C28—C10—H10119.9
C11—C12—C8116.98 (19)C9—C10—H10119.9
C11—C12—C13118.66 (19)N1—C14—C15122.7 (2)
C8—C12—C13124.35 (18)N1—C14—H14118.7
C6—C7—C2118.89 (19)C15—C14—H14118.7
C6—C7—C1122.1 (2)C16—C15—C14118.2 (2)
C2—C7—C1119.0 (2)C16—C15—H15120.9
C23—N2—C19118.88 (19)C14—C15—H15120.9
C23—N2—Ni1125.94 (15)C15—C16—C17119.8 (2)
C19—N2—Ni1114.91 (14)C15—C16—H16120.1
C4—C6—C7120.8 (2)C17—C16—H16120.1
C4—C6—H6119.6

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2416).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, J. Q., Wang, Y. Y., Ma, L. F., Wen, G. L., Shi, Q. Z., Batten, S. R. & Proserpio, D. M. (2008). CrystEngComm, 10, 1123–1125.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, J., Ma, J. F., Liu, Y. Y. & Batten, S. R. (2009). CrystEngComm, 11, 151–159.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography