PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3068.
Published online 2010 November 6. doi:  10.1107/S1600536810044508
PMCID: PMC3011407

3-(2-Bromo­eth­oxy)-4-(4-bromo­phen­yl)furan-5(2H)-one

Abstract

In the title compound, C12H10Br2O3, the dihedral angle between the furan-5(2H)-one ring and the benzene ring is 1.2 (3)°. Two intra­molecular C—H(...)O inter­actions occur in the mol­ecule, both of which generate S(6) rings. The bromo­ethyl fragment is disordered over two sets of sites in a 0.773 (8):0.227 (8) ratio. In the crystal, inversion dimers linked by pairs of C—H(...)π inter­actions occur.

Related literature

For background to furan­ones, see: Bailly et al. (2008 [triangle]); Weber et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3068-scheme1.jpg

Experimental

Crystal data

  • C12H10Br2O3
  • M r = 362.02
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3068-efi1.jpg
  • a = 8.6171 (13) Å
  • b = 10.4434 (16) Å
  • c = 13.958 (2) Å
  • β = 95.831 (3)°
  • V = 1249.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 6.48 mm−1
  • T = 298 K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.357, T max = 0.564
  • 7195 measured reflections
  • 2582 independent reflections
  • 1765 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.187
  • S = 1.05
  • 2582 reflections
  • 155 parameters
  • 29 restraints
  • H-atom parameters constrained
  • Δρmax = 1.37 e Å−3
  • Δρmin = −1.15 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810044508/hb5720sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044508/hb5720Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was financed by the Scientific Research Fund of Hunan Provincial Education Department (Project 09B083) of China and by a grant (No. JSDXKYZZ0801) from Jishou University for talent introduction, Hunan Province, China

supplementary crystallographic information

Comment

Many compounds with γ-butyrolactone-core (furanone) show diverse biological activities such as antitumor and anti-inflammatory activity (Bailly et al., 2008; Weber et al., 2005). Recently, we focused our efforts to synthesize enamines with γ-butyrolactone-core for antibacterial activity screening. Herein, we report the crystal structure of the title compound (I).

Bond distance C7—C10 (1.334 (10) Å) is followed in the range of a typical double bond (1.32–1.38 Å), and the title compound was therefore identified as a furan-5(2H)-one not a furan-2(3H)-one. C10—O3 (1.348 (8) Å) bond has shorter bond distance than the standard C—O single bond (1.41–1.44 Å), but longer than C—O double bond (1.19–1.23 Å). This clearly indicated that an sp3 orbital of O3 is conjugated with the π molecular orbital of C7—C10 double bond, which was supported by the small torsion angle (0.4 (12) °) of C1—C7—C10—O3. The stereochemistry of the double bond in lactone ring was assigned as (E)-configuration based on X-ray crystallography of the title compound (Fig. 1). The butyrolactone moiety makes a dihedral angle of 1.2 (3) ° with the 4-fluorophenyl group. The side chain bromoethyl group is disorder (Fig. 1). C—H···Π contacts link molecules into dimers (Fig. 2), and the result dimers are packed by van der waals.

Experimental

3-(4-Bromophenyl)-4-hydroxyfuran-5(2H)-one (0.77 g, 3 mmol) was added to a solution of 1,2-dibromoethane (2.8 g, 15 mmol) and triethylamine (0.7 g, 7 mmol) in dry acetone. The stirring was maintained at reflux temperature for 5 h. After the solvent was removed, the residue was partitioned between EtOAc and water. The organic layer was then dryed over MgSO4 and concentrated under reduced pressure. Flash chromatography (EtOAc/petroleum ether, 1/1, v/v) gave a fraction, which was partially evaporated to give the colorless blocks of (I).

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 and 0.96 Å for the aromatic and CH2 type H atoms, respectively. Uiso = 1.2Ueq(parent atoms) were assigned for all H atoms.

Figures

Fig. 1.
Molecular structure of the title compound, showing isplacement ellipsoids drawn at the 30% probability level.
Fig. 2.
Dimers are formed through intermolecular C—H···π hydrogen bond pairs. Dashed lines indicate C—H···π contacts.

Crystal data

C12H10Br2O3F(000) = 704
Mr = 362.02Dx = 1.924 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1832 reflections
a = 8.6171 (13) Åθ = 2.6–26.1°
b = 10.4434 (16) ŵ = 6.48 mm1
c = 13.958 (2) ÅT = 298 K
β = 95.831 (3)°Block, colorless
V = 1249.6 (3) Å30.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer2582 independent reflections
Radiation source: fine-focus sealed tube1765 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 26.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.357, Tmax = 0.564k = −6→13
7195 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.1008P)2 + 2.0749P] where P = (Fo2 + 2Fc2)/3
2582 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 1.37 e Å3
29 restraintsΔρmin = −1.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Br10.50480 (10)0.34315 (8)0.21873 (6)0.0737 (4)
Br2A0.2920 (5)0.92938 (17)0.48473 (18)0.0900 (8)0.773 (8)
Br2B0.2207 (13)0.9329 (7)0.4681 (7)0.0900 (8)0.227 (8)
C10.2553 (7)0.4284 (6)0.4943 (5)0.0478 (14)
C20.2843 (9)0.3041 (7)0.4667 (5)0.0600 (18)
H20.25340.23680.50410.072*
C30.3561 (9)0.2770 (7)0.3870 (6)0.0627 (18)
H30.37110.19230.36960.075*
C40.4069 (8)0.3750 (7)0.3319 (5)0.0516 (15)
C50.3815 (9)0.5002 (6)0.3576 (5)0.0562 (17)
H50.41470.56680.32050.067*
C60.3076 (8)0.5270 (6)0.4379 (5)0.0566 (17)
H60.29200.61170.45490.068*
C70.1745 (8)0.4574 (7)0.5800 (5)0.0491 (15)
C80.1126 (9)0.3606 (9)0.6426 (6)0.067 (2)
C90.0595 (10)0.5553 (9)0.7061 (5)0.069 (2)
H9A0.12080.59230.76140.083*
H9B−0.04250.59540.69880.083*
C100.1405 (8)0.5708 (7)0.6165 (5)0.0548 (16)
C110.1273 (12)0.7904 (7)0.6271 (7)0.092 (3)
H11A0.14060.77430.69590.110*0.773 (8)
H11B0.01720.80500.60850.110*0.773 (8)
H11C0.21250.82020.67240.110*0.227 (8)
H11D0.04120.76710.66330.110*0.227 (8)
C12A0.2190 (15)0.9106 (9)0.6052 (6)0.0900 (8)0.773 (8)
H12A0.30850.91600.65320.108*0.773 (8)
H12B0.15340.98400.61500.108*0.773 (8)
C12B0.076 (3)0.899 (2)0.5565 (19)0.0900 (8)0.227 (8)
H12C0.05990.97630.59290.108*0.227 (8)
H12D−0.02350.87630.52140.108*0.227 (8)
O10.1076 (8)0.2448 (6)0.6373 (5)0.0886 (18)
O20.0467 (7)0.4217 (6)0.7160 (4)0.0808 (17)
O30.1739 (7)0.6861 (5)0.5802 (4)0.0731 (16)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0856 (6)0.0761 (6)0.0639 (5)0.0142 (4)0.0292 (4)−0.0115 (4)
Br2A0.102 (2)0.0635 (7)0.1132 (11)−0.0048 (10)0.0551 (13)−0.0016 (6)
Br2B0.102 (2)0.0635 (7)0.1132 (11)−0.0048 (10)0.0551 (13)−0.0016 (6)
C10.046 (3)0.045 (4)0.052 (3)−0.003 (3)0.008 (3)0.007 (3)
C20.080 (5)0.038 (4)0.064 (4)−0.003 (3)0.016 (4)0.012 (3)
C30.076 (5)0.038 (4)0.076 (5)0.008 (3)0.017 (4)−0.002 (3)
C40.055 (4)0.049 (4)0.053 (3)0.004 (3)0.015 (3)−0.008 (3)
C50.079 (5)0.040 (4)0.054 (4)−0.005 (3)0.024 (3)0.002 (3)
C60.076 (5)0.038 (3)0.060 (4)−0.004 (3)0.028 (3)0.006 (3)
C70.052 (4)0.054 (4)0.043 (3)−0.005 (3)0.012 (3)0.005 (3)
C80.060 (4)0.081 (6)0.061 (4)−0.002 (4)0.015 (3)0.022 (4)
C90.074 (5)0.089 (6)0.049 (4)−0.004 (4)0.026 (3)0.000 (4)
C100.053 (4)0.068 (5)0.046 (3)0.000 (3)0.018 (3)0.001 (3)
C110.116 (7)0.071 (5)0.096 (6)−0.002 (5)0.054 (5)−0.024 (4)
C12A0.102 (2)0.0635 (7)0.1132 (11)−0.0048 (10)0.0551 (13)−0.0016 (6)
C12B0.102 (2)0.0635 (7)0.1132 (11)−0.0048 (10)0.0551 (13)−0.0016 (6)
O10.106 (5)0.067 (4)0.099 (4)−0.010 (3)0.037 (3)0.031 (3)
O20.084 (4)0.098 (5)0.067 (3)−0.003 (3)0.039 (3)0.021 (3)
O30.111 (4)0.048 (3)0.069 (3)0.000 (3)0.053 (3)−0.006 (2)

Geometric parameters (Å, °)

Br1—C41.895 (6)C8—O21.377 (10)
Br2A—C12A1.864 (5)C9—O21.407 (11)
Br2B—C12B1.878 (6)C9—C101.501 (9)
C1—C21.384 (10)C9—H9A0.9700
C1—C61.397 (9)C9—H9B0.9700
C1—C71.476 (9)C10—O31.348 (8)
C2—C31.357 (11)C11—O31.352 (9)
C2—H20.9300C11—C12A1.531 (5)
C3—C41.378 (10)C11—C12B1.539 (6)
C3—H30.9300C11—H11A0.9700
C4—C51.379 (10)C11—H11B0.9700
C5—C61.372 (9)C11—H11C0.9700
C5—H50.9300C11—H11D0.9700
C6—H60.9300C12A—H12A0.9700
C7—C101.334 (10)C12A—H12B0.9700
C7—C81.471 (10)C12B—H12C0.9700
C8—O11.212 (10)C12B—H12D0.9700
C2—C1—C6117.2 (6)O3—C11—C12B111.5 (12)
C2—C1—C7122.0 (6)C12A—C11—C12B52.3 (13)
C6—C1—C7120.8 (6)O3—C11—H11A109.1
C3—C2—C1122.2 (6)C12A—C11—H11A109.1
C3—C2—H2118.9C12B—C11—H11A139.4
C1—C2—H2118.9O3—C11—H11B109.1
C2—C3—C4120.0 (6)C12A—C11—H11B109.1
C2—C3—H3120.0C12B—C11—H11B60.0
C4—C3—H3120.0H11A—C11—H11B107.9
C3—C4—C5119.4 (6)O3—C11—H11C109.3
C3—C4—Br1121.9 (5)C12A—C11—H11C59.7
C5—C4—Br1118.6 (5)C12B—C11—H11C109.3
C6—C5—C4120.3 (6)H11A—C11—H11C53.5
C6—C5—H5119.9H11B—C11—H11C141.2
C4—C5—H5119.9O3—C11—H11D109.3
C5—C6—C1120.8 (7)C12A—C11—H11D138.3
C5—C6—H6119.6C12B—C11—H11D109.3
C1—C6—H6119.6H11A—C11—H11D57.4
C10—C7—C8106.0 (6)H11B—C11—H11D53.1
C10—C7—C1129.2 (6)H11C—C11—H11D108.0
C8—C7—C1124.8 (7)C11—C12A—Br2A119.6 (6)
O1—C8—O2119.5 (7)C11—C12A—H12A107.4
O1—C8—C7131.4 (8)Br2A—C12A—H12A107.4
O2—C8—C7109.0 (7)C11—C12A—H12B107.4
O2—C9—C10103.7 (6)Br2A—C12A—H12B107.4
O2—C9—H9A111.0H12A—C12A—H12B106.9
C10—C9—H9A111.0C11—C12B—Br2B113.0 (7)
O2—C9—H9B111.0C11—C12B—H12C109.0
C10—C9—H9B111.0Br2B—C12B—H12C109.0
H9A—C9—H9B109.0C11—C12B—H12D109.0
C7—C10—O3125.9 (6)Br2B—C12B—H12D109.0
C7—C10—C9111.1 (6)H12C—C12B—H12D107.8
O3—C10—C9123.0 (6)C8—O2—C9110.1 (6)
O3—C11—C12A112.3 (6)C10—O3—C11116.9 (5)
C6—C1—C2—C3−1.9 (11)C8—C7—C10—O3−178.9 (7)
C7—C1—C2—C3178.8 (7)C1—C7—C10—O30.4 (12)
C1—C2—C3—C41.8 (12)C8—C7—C10—C91.8 (8)
C2—C3—C4—C5−1.1 (11)C1—C7—C10—C9−178.9 (7)
C2—C3—C4—Br1−178.9 (6)O2—C9—C10—C7−1.5 (9)
C3—C4—C5—C60.5 (11)O2—C9—C10—O3179.1 (7)
Br1—C4—C5—C6178.4 (6)O3—C11—C12A—Br2A31.9 (14)
C4—C5—C6—C1−0.6 (12)C12B—C11—C12A—Br2A−68.7 (13)
C2—C1—C6—C51.3 (11)O3—C11—C12B—Br2B−49 (2)
C7—C1—C6—C5−179.4 (7)C12A—C11—C12B—Br2B53.0 (14)
C2—C1—C7—C10178.8 (7)O1—C8—O2—C9−177.4 (8)
C6—C1—C7—C10−0.5 (11)C7—C8—O2—C90.4 (8)
C2—C1—C7—C8−2.0 (11)C10—C9—O2—C80.6 (8)
C6—C1—C7—C8178.7 (7)C7—C10—O3—C11179.0 (8)
C10—C7—C8—O1176.1 (9)C9—C10—O3—C11−1.7 (11)
C1—C7—C8—O1−3.2 (13)C12A—C11—O3—C10158.9 (8)
C10—C7—C8—O2−1.4 (8)C12B—C11—O3—C10−144.3 (13)
C1—C7—C8—O2179.3 (6)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.353.018 (10)129
C6—H6···O30.932.252.916 (8)128
C9—H9B···Cg1i0.972.803.632 (9)144

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5720).

References

  • Bailly, F., Queffèlec, C., Mbemba, G., Mouscadet, J. F., Pommery, N., Pommery, J., Hènichart, J. P. & Cotelle, P. (2008). Eur. J. Med. Chem.43, 1222–1229. [PubMed]
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Weber, V., Rubat, C., Duroux, E., Lartigue, C., Madesclaire, M. & Coudert, P. (2005). Bioorg. Med. Chem.13, 4552–4564. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography