PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3352.
Published online 2010 November 30. doi:  10.1107/S1600536810049135
PMCID: PMC3011403

4-Bromo­methyl-7,8-dimethyl­coumarin

Abstract

In the title mol­ecule, C12H11BrO2, all non-H atoms with the exception of the Br atom are essentially coplanar (r.m.s. deviation = 0.018 Å). The C—Br bond is inclined by 80.17 (12)° to this plane. The crystal structure is stabilized by weak C—H(...)O hydrogen bonds.

Related literature

For potential synthetic applications of the title compound, see: Cui et al. (2007 [triangle]); Zhao et al. (2008 [triangle]). For related structures, see: Gowda et al. (2009 [triangle], 2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3352-scheme1.jpg

Experimental

Crystal data

  • C12H11BrO2
  • M r = 267.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3352-efi1.jpg
  • a = 18.5025 (14) Å
  • b = 9.8785 (7) Å
  • c = 13.1639 (10) Å
  • β = 118.908 (2)°
  • V = 2106.3 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 3.88 mm−1
  • T = 292 K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker 2004 [triangle]) T min = 0.432, T max = 0.571
  • 14710 measured reflections
  • 3610 independent reflections
  • 2516 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.116
  • S = 1.05
  • 3610 reflections
  • 138 parameters
  • H-atom parameters constrained
  • Δρmax = 1.78 e Å−3
  • Δρmin = −0.73 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994) [triangle]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810049135/lh5165sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049135/lh5165Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RG thanks MVJ College of Engineering, Bangalore (VTU Research center), for providing research facilities. The authors also thank the SAIF IIT Madras, Chennai, for the data collection.

supplementary crystallographic information

Comment

The title compound has potential use in Heck and Suzuki cross coupling reactions (Cui et al., 2007) and Negishi coupling reactions (Zhao et al., 2008). In continuation of our work on the crystal structures of halogenated coumarin derivatives (Gowda et al., 2009; 2010) herein we report crystal structure of title compound.

The molecular structure of the title compound is shown in Fig. 1. In the molecule, with the exception of the Br atom, all non-hydrogen atoms [C1-C12/O1/O2] are essentially planar [r.m.s. = 0.018Å]]. The C-Br bond is inclined [defined by the C7/C12/Br1 plane] by 80.17 (12)° to this plane. The crystal structure is stabilized by weak C-H···O hydrogen bonds (Fig. 2).

Experimental

To a mixture of equimolar quantities of 2,3-dimethylphenol (0.1 mol) and 4-bromoethylacetoacetate (0.1 mol), sulfuric acid (30 ml) was added dropwise with stirring while maintaining the temperature between 273-278K. The reaction mixture was allowed to stand in ice chest overnight and the deep red coloured solution was poured into a stream of crushed ice. The solid which separated was filtered and washed with water and then with cold ethanol to yield a colourless compound which was recrystallized from acetic acid.

Refinement

All H atoms were positioned geometrically and refined using a riding model with bond lengths 0.96 (methyl) or 0.93 Å (aromatic) and Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title compound shown with 50% probability displacement ellipsoids.
Fig. 2.
Part of the crystal structure showing weak C-H···O hydrogen bonds as dashed lines.

Crystal data

C12H11BrO2F(000) = 1072
Mr = 267.12Dx = 1.685 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5018 reflections
a = 18.5025 (14) Åθ = 2.4–28.6°
b = 9.8785 (7) ŵ = 3.88 mm1
c = 13.1639 (10) ÅT = 292 K
β = 118.908 (2)°Block, colourless
V = 2106.3 (3) Å30.30 × 0.20 × 0.20 mm
Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer3610 independent reflections
Radiation source: fine-focus sealed tube2516 reflections with I > 2σ(I)
graphiteRint = 0.026
ω and [var phi] scansθmax = 31.9°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker 2004)h = −27→27
Tmin = 0.432, Tmax = 0.571k = −14→14
14710 measured reflectionsl = −19→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0574P)2 + 1.9612P] where P = (Fo2 + 2Fc2)/3
3610 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 1.78 e Å3
0 restraintsΔρmin = −0.73 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.36207 (15)0.1296 (2)0.0849 (2)0.0332 (5)
C20.39174 (15)0.1512 (2)0.2032 (2)0.0363 (5)
C30.40658 (16)0.2836 (3)0.24674 (19)0.0398 (5)
H30.42630.29740.32570.048*
C40.39291 (16)0.3930 (3)0.17644 (19)0.0366 (5)
H40.40330.47970.20790.044*
C50.36354 (14)0.3756 (2)0.05795 (17)0.0289 (4)
C60.34902 (13)0.2433 (2)0.01547 (17)0.0292 (4)
C70.34654 (14)0.4850 (2)−0.02371 (18)0.0303 (4)
C80.31617 (15)0.4562 (2)−0.13705 (19)0.0354 (5)
H80.30250.5272−0.18960.043*
C90.30411 (16)0.3200 (2)−0.1796 (2)0.0371 (5)
C100.34498 (19)−0.0090 (2)0.0328 (3)0.0460 (6)
H10A0.3014−0.0043−0.04610.069*
H10B0.3287−0.06740.07640.069*
H10C0.3939−0.04430.03460.069*
C110.4099 (2)0.0349 (3)0.2855 (3)0.0530 (7)
H11A0.3594−0.01100.26780.079*
H11B0.43500.06840.36370.079*
H11C0.4469−0.02710.27780.079*
C120.36044 (16)0.6286 (2)0.0163 (2)0.0383 (5)
H12A0.34230.64210.07340.046*
H12B0.32870.6883−0.04890.046*
O10.32072 (11)0.21805 (17)−0.10098 (13)0.0360 (4)
O20.28162 (15)0.2864 (2)−0.27881 (15)0.0554 (5)
Br10.478174 (17)0.67133 (3)0.08473 (2)0.04795 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0327 (11)0.0270 (10)0.0415 (11)0.0027 (9)0.0190 (9)0.0012 (9)
C20.0344 (12)0.0387 (13)0.0398 (11)0.0035 (10)0.0211 (10)0.0077 (9)
C30.0438 (13)0.0458 (13)0.0298 (10)−0.0008 (11)0.0178 (9)−0.0007 (9)
C40.0432 (13)0.0338 (12)0.0336 (10)−0.0029 (10)0.0192 (9)−0.0068 (9)
C50.0311 (11)0.0248 (9)0.0302 (9)0.0002 (8)0.0143 (8)−0.0018 (7)
C60.0300 (10)0.0285 (10)0.0293 (9)0.0007 (8)0.0144 (8)−0.0022 (7)
C70.0296 (10)0.0252 (10)0.0348 (9)0.0003 (8)0.0145 (8)−0.0006 (8)
C80.0386 (12)0.0317 (11)0.0333 (9)−0.0003 (9)0.0153 (9)0.0036 (8)
C90.0383 (12)0.0369 (12)0.0323 (9)−0.0018 (10)0.0140 (9)−0.0019 (9)
C100.0564 (16)0.0264 (11)0.0576 (14)0.0007 (11)0.0295 (13)−0.0007 (10)
C110.0552 (17)0.0542 (17)0.0511 (14)0.0062 (14)0.0269 (13)0.0211 (13)
C120.0402 (13)0.0256 (10)0.0434 (12)0.0017 (10)0.0158 (10)−0.0003 (9)
O10.0464 (10)0.0278 (8)0.0312 (7)−0.0013 (7)0.0169 (7)−0.0053 (6)
O20.0764 (15)0.0524 (11)0.0310 (8)−0.0053 (11)0.0208 (9)−0.0057 (8)
Br10.04529 (18)0.04007 (16)0.04762 (16)−0.00806 (11)0.01383 (12)0.00024 (10)

Geometric parameters (Å, °)

C1—C61.393 (3)C8—C91.433 (3)
C1—C21.394 (3)C8—H80.9300
C1—C101.495 (3)C9—O21.210 (3)
C2—C31.401 (4)C9—O11.368 (3)
C2—C111.502 (3)C10—H10A0.9600
C3—C41.364 (4)C10—H10B0.9600
C3—H30.9300C10—H10C0.9600
C4—C51.392 (3)C11—H11A0.9600
C4—H40.9300C11—H11B0.9600
C5—C61.396 (3)C11—H11C0.9600
C5—C71.447 (3)C12—Br11.959 (3)
C6—O11.382 (2)C12—H12A0.9700
C7—C81.346 (3)C12—H12B0.9700
C7—C121.492 (3)
C6—C1—C2117.3 (2)C9—C8—H8118.9
C6—C1—C10120.4 (2)O2—C9—O1116.7 (2)
C2—C1—C10122.3 (2)O2—C9—C8125.9 (2)
C1—C2—C3119.6 (2)O1—C9—C8117.38 (19)
C1—C2—C11121.2 (2)C1—C10—H10A109.5
C3—C2—C11119.2 (2)C1—C10—H10B109.5
C4—C3—C2121.7 (2)H10A—C10—H10B109.5
C4—C3—H3119.1C1—C10—H10C109.5
C2—C3—H3119.1H10A—C10—H10C109.5
C3—C4—C5120.4 (2)H10B—C10—H10C109.5
C3—C4—H4119.8C2—C11—H11A109.5
C5—C4—H4119.8C2—C11—H11B109.5
C4—C5—C6117.4 (2)H11A—C11—H11B109.5
C4—C5—C7124.5 (2)C2—C11—H11C109.5
C6—C5—C7118.09 (18)H11A—C11—H11C109.5
O1—C6—C1115.77 (19)H11B—C11—H11C109.5
O1—C6—C5120.65 (19)C7—C12—Br1109.33 (17)
C1—C6—C5123.6 (2)C7—C12—H12A109.8
C8—C7—C5119.4 (2)Br1—C12—H12A109.8
C8—C7—C12120.0 (2)C7—C12—H12B109.8
C5—C7—C12120.64 (19)Br1—C12—H12B109.8
C7—C8—C9122.3 (2)H12A—C12—H12B108.3
C7—C8—H8118.9C9—O1—C6122.16 (18)
C6—C1—C2—C30.3 (4)C7—C5—C6—C1−179.3 (2)
C10—C1—C2—C3180.0 (2)C4—C5—C7—C8−178.3 (2)
C6—C1—C2—C11−178.3 (2)C6—C5—C7—C81.2 (3)
C10—C1—C2—C111.3 (4)C4—C5—C7—C120.3 (4)
C1—C2—C3—C4−0.1 (4)C6—C5—C7—C12179.7 (2)
C11—C2—C3—C4178.6 (3)C5—C7—C8—C9−3.5 (4)
C2—C3—C4—C5−0.1 (4)C12—C7—C8—C9178.0 (2)
C3—C4—C5—C60.0 (4)C7—C8—C9—O2−175.6 (3)
C3—C4—C5—C7179.5 (2)C7—C8—C9—O13.3 (4)
C2—C1—C6—O1179.1 (2)C8—C7—C12—Br1−101.7 (2)
C10—C1—C6—O1−0.5 (3)C5—C7—C12—Br179.8 (2)
C2—C1—C6—C5−0.4 (4)O2—C9—O1—C6178.2 (2)
C10—C1—C6—C5180.0 (2)C8—C9—O1—C6−0.8 (4)
C4—C5—C6—O1−179.3 (2)C1—C6—O1—C9179.1 (2)
C7—C5—C6—O11.2 (3)C5—C6—O1—C9−1.4 (3)
C4—C5—C6—C10.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C12—H12B···O2i0.972.403.342 (3)163

Symmetry codes: (i) −x+1/2, y+1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5165).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cui, X., Li, J., Zhang, Z.-P., Fu, Y., Liu, L. & Guo, Q.-X. (2007). J. Org. Chem.72, 9342–9345. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gowda, R., Alawandi, G. N., Kulkarni, M. V. & Gowda, K. V. A. (2009). Acta Cryst. E65, o2446. [PMC free article] [PubMed]
  • Gowda, R., Basanagouda, M., Kulkarni, M. V. & Gowda, K. V. A. (2010). Acta Cryst. E66, o2906. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zhao, J., Liu, Y. & Ma, S. (2008). Org. Lett.10, 1521–1523. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography