PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3104.
Published online 2010 November 6. doi:  10.1107/S1600536810045101
PMCID: PMC3011400

6-Chloro-4-(2-phenyl­ethen­yl)chroman-2-one

Abstract

The title compound, C17H13ClO2, was obtained from the oxidation of 6-chloro-4-(2-phenyl­ethen­yl)chroman-2-ol, which was synthesized by the reaction of of (E)-3-(5-chloro-2-hy­droxy­phen­yl)acryl­aldehyde with styrylboronic acid using diethyl­amine as a catalyst. The six-membered pyran­one ring of the chromane system has a screw-boat conformation. The dihedral angle between the least-squares planes of the chromane ring system and the styryl group is 85.28 (9)°.

Related literature

For the synthesis of the title compound, see: Choi & Kim (2010 [triangle]). For the biological activity of chromenes, see: Ellis & Lockhart (2007 [triangle]); Green et al. (1996) [triangle]; Horton et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3104-scheme1.jpg

Experimental

Crystal data

  • C17H13ClO2
  • M r = 284.72
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3104-efi1.jpg
  • a = 15.6682 (3) Å
  • b = 6.2800 (1) Å
  • c = 14.9383 (3) Å
  • β = 115.129 (1)°
  • V = 1330.76 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 100 K
  • 0.28 × 0.13 × 0.05 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.925, T max = 0.986
  • 12258 measured reflections
  • 3325 independent reflections
  • 2839 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.083
  • S = 1.06
  • 3325 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045101/is2627sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045101/is2627Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0004139).

supplementary crystallographic information

Comment

Chromanes (dihydrobenzopyranes) are ubiquitously found in numerous biologically active natural products. Molecules containing chromane scaffolds exhibit a broad range of bioactivities, such as antiviral, antitumor, antimicrobial, sex pheromone, and those of the central nervous system activity (Ellis & Lockhart, 2007; Green et al., 1996; Horton et al. 2003). We report herein the crystal structure of the title compound, which belongs to this class of compounds.

In the title compound, the six-membered pyranone ring of the chromane system has a screw-boat conformation. The dihedral angle between the least-squares planes of the chromane ring system and the styryl group is 85.28 (9)°.

Experimental

To a solution of triethylamine (0.10 mmol) in CH2Cl2 (1.5 ml) was added styrylboronic acid (0.60 mmol) at room temperature. The solution was stirred for 5 min before addition of (E)-3-(5-chloro-2-hydroxyphenyl)acrylaldehyde (0.50 mmol). After stirring for 3 h, the resulting mixture was direct purified by silica gel chromatography to afford 6-chloro-3,4-dihydro-4-styryl-2H-chromen-2-ol. Oxidation of 6-chloro-3,4-dihydro-4-styryl-2H-chromen-2-ol (0.40 mmol) was performed in CH2Cl2 (2.0 ml) by adding of pyridinium chlorochromate (0.40 mmol) at room temperature. After 3 h, additional pyridinium chlorochromate (0.40 mmol) was added and after 6 h purification by silica gel chromatography was afforded the title compound (Fig. 2). Crystals suitable for X-ray analysis were obtained by slow evaporation from an n-hexane/CH2Cl2 solution.

Refinement

All H atoms were positioned geometrically, with C—H = 0.93–0.98 Å and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
A view of the molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The preparation scheme of the title compound.

Crystal data

C17H13ClO2F(000) = 592
Mr = 284.72Dx = 1.421 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5561 reflections
a = 15.6682 (3) Åθ = 3.6–28.3°
b = 6.2800 (1) ŵ = 0.28 mm1
c = 14.9383 (3) ÅT = 100 K
β = 115.129 (1)°Block, silver
V = 1330.76 (4) Å30.28 × 0.13 × 0.05 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer3325 independent reflections
Radiation source: fine-focus sealed tube2839 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 28.4°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −18→20
Tmin = 0.925, Tmax = 0.986k = −8→8
12258 measured reflectionsl = −19→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0306P)2 + 0.755P] where P = (Fo2 + 2Fc2)/3
3325 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.64583 (2)0.83763 (5)0.61691 (2)0.02134 (9)
O10.35931 (6)0.24736 (14)0.62698 (7)0.0185 (2)
O20.21611 (7)0.17409 (16)0.60995 (8)0.0267 (2)
C10.39949 (9)0.6045 (2)0.59464 (9)0.0149 (2)
C20.42529 (9)0.3975 (2)0.62766 (9)0.0156 (2)
C30.51713 (9)0.3250 (2)0.65950 (9)0.0176 (3)
H3A0.53250.18640.68270.021*
C40.58581 (9)0.4603 (2)0.65657 (9)0.0186 (3)
H4A0.64770.41410.67770.022*
C50.56024 (9)0.6657 (2)0.62152 (9)0.0166 (3)
C60.46877 (9)0.7392 (2)0.59102 (9)0.0161 (2)
H6A0.45360.87810.56820.019*
C70.27232 (9)0.3112 (2)0.61886 (10)0.0186 (3)
C80.25822 (9)0.5461 (2)0.62445 (10)0.0181 (3)
H8A0.28810.59070.69310.022*
H8B0.19130.57530.59980.022*
C90.29900 (9)0.6771 (2)0.56459 (9)0.0158 (2)
H9A0.29980.82750.58240.019*
C100.24087 (9)0.6545 (2)0.45496 (9)0.0163 (2)
H10A0.23620.52080.42650.020*
C110.19575 (9)0.8170 (2)0.39674 (10)0.0170 (3)
H11A0.20350.94960.42690.020*
C120.13500 (9)0.8094 (2)0.28984 (9)0.0158 (2)
C130.07977 (9)0.9877 (2)0.24476 (10)0.0189 (3)
H13A0.08561.11060.28160.023*
C140.01637 (9)0.9834 (2)0.14573 (10)0.0213 (3)
H14A−0.02001.10290.11690.026*
C150.00700 (9)0.8019 (2)0.08960 (10)0.0209 (3)
H15A−0.03670.79760.02380.025*
C160.06374 (9)0.6256 (2)0.13271 (10)0.0202 (3)
H16A0.05910.50480.09490.024*
C170.12697 (9)0.6293 (2)0.23151 (10)0.0184 (3)
H17A0.16450.51090.25940.022*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.01884 (16)0.02132 (17)0.02491 (18)−0.00529 (12)0.01029 (13)−0.00125 (13)
O10.0182 (4)0.0133 (4)0.0248 (5)−0.0015 (4)0.0099 (4)0.0013 (4)
O20.0231 (5)0.0219 (5)0.0368 (6)−0.0055 (4)0.0142 (5)0.0006 (4)
C10.0160 (6)0.0155 (6)0.0117 (6)0.0004 (5)0.0044 (5)−0.0005 (5)
C20.0172 (6)0.0153 (6)0.0138 (6)−0.0027 (5)0.0062 (5)−0.0011 (5)
C30.0196 (6)0.0145 (6)0.0169 (6)0.0023 (5)0.0061 (5)0.0020 (5)
C40.0156 (6)0.0203 (6)0.0180 (6)0.0011 (5)0.0053 (5)−0.0005 (5)
C50.0173 (6)0.0174 (6)0.0156 (6)−0.0044 (5)0.0073 (5)−0.0019 (5)
C60.0198 (6)0.0136 (6)0.0138 (6)−0.0009 (5)0.0060 (5)0.0000 (5)
C70.0188 (6)0.0209 (7)0.0168 (6)−0.0015 (5)0.0081 (5)0.0003 (5)
C80.0177 (6)0.0191 (6)0.0187 (6)0.0002 (5)0.0087 (5)−0.0008 (5)
C90.0160 (6)0.0134 (6)0.0169 (6)0.0003 (5)0.0059 (5)−0.0006 (5)
C100.0154 (6)0.0153 (6)0.0176 (6)−0.0010 (5)0.0064 (5)−0.0020 (5)
C110.0160 (6)0.0166 (6)0.0195 (6)−0.0009 (5)0.0087 (5)−0.0008 (5)
C120.0137 (5)0.0173 (6)0.0173 (6)−0.0005 (5)0.0076 (5)0.0027 (5)
C130.0211 (6)0.0175 (6)0.0214 (7)0.0022 (5)0.0123 (5)0.0013 (5)
C140.0206 (6)0.0235 (7)0.0218 (7)0.0074 (5)0.0110 (5)0.0069 (5)
C150.0170 (6)0.0297 (7)0.0158 (6)0.0015 (5)0.0067 (5)0.0029 (5)
C160.0200 (6)0.0216 (7)0.0201 (7)−0.0018 (5)0.0096 (5)−0.0031 (5)
C170.0176 (6)0.0167 (6)0.0217 (7)0.0031 (5)0.0092 (5)0.0030 (5)

Geometric parameters (Å, °)

Cl1—C51.7456 (13)C9—C101.5049 (17)
O1—C71.3758 (15)C9—H9A0.9800
O1—C21.3962 (15)C10—C111.3322 (18)
O2—C71.1981 (16)C10—H10A0.9300
C1—C21.3880 (18)C11—C121.4722 (18)
C1—C61.3953 (17)C11—H11A0.9300
C1—C91.5127 (17)C12—C131.4002 (18)
C2—C31.3867 (18)C12—C171.4004 (18)
C3—C41.3863 (18)C13—C141.3884 (19)
C3—H3A0.9300C13—H13A0.9300
C4—C51.3861 (19)C14—C151.385 (2)
C4—H4A0.9300C14—H14A0.9300
C5—C61.3856 (18)C15—C161.3945 (19)
C6—H6A0.9300C15—H15A0.9300
C7—C81.4990 (19)C16—C171.3851 (19)
C8—C91.5394 (17)C16—H16A0.9300
C8—H8A0.9700C17—H17A0.9300
C8—H8B0.9700
C7—O1—C2120.43 (10)C10—C9—C8111.91 (10)
C2—C1—C6117.87 (11)C1—C9—C8107.64 (10)
C2—C1—C9119.80 (11)C10—C9—H9A108.6
C6—C1—C9122.32 (11)C1—C9—H9A108.6
C3—C2—C1122.19 (12)C8—C9—H9A108.6
C3—C2—O1115.96 (11)C11—C10—C9123.12 (12)
C1—C2—O1121.80 (11)C11—C10—H10A118.4
C4—C3—C2119.62 (12)C9—C10—H10A118.4
C4—C3—H3A120.2C10—C11—C12127.08 (12)
C2—C3—H3A120.2C10—C11—H11A116.5
C5—C4—C3118.59 (12)C12—C11—H11A116.5
C5—C4—H4A120.7C13—C12—C17118.20 (12)
C3—C4—H4A120.7C13—C12—C11118.61 (12)
C6—C5—C4121.80 (12)C17—C12—C11123.15 (12)
C6—C5—Cl1119.05 (10)C14—C13—C12120.90 (12)
C4—C5—Cl1119.14 (10)C14—C13—H13A119.6
C5—C6—C1119.89 (12)C12—C13—H13A119.6
C5—C6—H6A120.1C15—C14—C13120.31 (13)
C1—C6—H6A120.1C15—C14—H14A119.8
O2—C7—O1117.02 (12)C13—C14—H14A119.8
O2—C7—C8126.49 (12)C14—C15—C16119.39 (13)
O1—C7—C8116.47 (11)C14—C15—H15A120.3
C7—C8—C9112.71 (10)C16—C15—H15A120.3
C7—C8—H8A109.0C17—C16—C15120.39 (12)
C9—C8—H8A109.0C17—C16—H16A119.8
C7—C8—H8B109.0C15—C16—H16A119.8
C9—C8—H8B109.0C16—C17—C12120.75 (12)
H8A—C8—H8B107.8C16—C17—H17A119.6
C10—C9—C1111.54 (10)C12—C17—H17A119.6
C6—C1—C2—C32.07 (19)C2—C1—C9—C10−94.72 (14)
C9—C1—C2—C3−177.61 (12)C6—C1—C9—C1085.61 (14)
C6—C1—C2—O1−175.28 (11)C2—C1—C9—C828.41 (15)
C9—C1—C2—O15.04 (18)C6—C1—C9—C8−151.26 (12)
C7—O1—C2—C3165.08 (11)C7—C8—C9—C1072.17 (14)
C7—O1—C2—C1−17.41 (17)C7—C8—C9—C1−50.73 (14)
C1—C2—C3—C4−1.5 (2)C1—C9—C10—C11−122.70 (13)
O1—C2—C3—C4175.98 (11)C8—C9—C10—C11116.65 (13)
C2—C3—C4—C5−0.02 (19)C9—C10—C11—C12−177.86 (11)
C3—C4—C5—C60.96 (19)C10—C11—C12—C13168.28 (12)
C3—C4—C5—Cl1−179.75 (10)C10—C11—C12—C17−9.2 (2)
C4—C5—C6—C1−0.38 (19)C17—C12—C13—C142.21 (18)
Cl1—C5—C6—C1−179.67 (9)C11—C12—C13—C14−175.41 (11)
C2—C1—C6—C5−1.11 (18)C12—C13—C14—C15−0.25 (19)
C9—C1—C6—C5178.56 (11)C13—C14—C15—C16−1.82 (19)
C2—O1—C7—O2173.59 (12)C14—C15—C16—C171.90 (19)
C2—O1—C7—C8−7.79 (17)C15—C16—C17—C120.10 (19)
O2—C7—C8—C9−138.65 (14)C13—C12—C17—C16−2.13 (18)
O1—C7—C8—C942.87 (16)C11—C12—C17—C16175.38 (12)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2627).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, K.-S. & Kim, S.-G. (2010). Tetrahedron Lett.51, 5203–5206.
  • Ellis, G. P. & Lockhart, I. M. (2007). The Chemistry of Heterocyclic Compounds, Chromenes, Chromanones, and Chromones, Vol. 31, edited by G. P. Ellis, pp. 1–119. New York: Wiley–VCH.
  • Geen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry II: Pyrans and their Benzo Derivatives: Applications, Vol. 5, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven, pp. 469–500. Oxford: Pergamon Press.
  • Horton, D. A., Boume, G. T. & Smythe, M. L. (2003). Chem. Rev.103, 893–930. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography