PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3203.
Published online 2010 November 17. doi:  10.1107/S1600536810046301
PMCID: PMC3011399

3-Benzyl-6-(2-chloro­benzo­yl)-1,3-benzoxazol-2(3H)-one

Abstract

In the title compound, C21H14ClNO3, the benzoxazolone ring system is planar (r.m.s. deviation = 0.022 Å) and forms dihedral angles of 75.38 (10) and 65.92 (13)° with the mean planes of the chloro­benzoyl (r.m.s. deviation = 0.045 Å, excluding O atom) and benzyl (r.m.s. deviation = 0.023 Å) groups. The observed structure is stabilized by weak C—H(...)O hydrogen bonds and weak inter­molecular C—H(...)π inter­actions.

Related literature

For the natural source of benzoxazolin-2-one and its derivatives, see: Tang et al. (1975 [triangle]); Chen & Chen (1976 [triangle]); Smissman et al. (1957 [triangle]). For the synthesis of benzoxazolin-2-one derivatives, see: Honkanen & Virtanen (1961 [triangle]); Bredenberg et al. (1962 [triangle]); Mukhamedov et al. (1994 [triangle]). For related structures, see: Groth (1973 [triangle]); Işık et al. (2004 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3203-scheme1.jpg

Experimental

Crystal data

  • C21H14ClNO3
  • M r = 363.78
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3203-efi1.jpg
  • a = 13.391 (7) Å
  • b = 7.317 (6) Å
  • c = 18.611 (9) Å
  • β = 109.72 (4)°
  • V = 1716.6 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 293 K
  • 0.80 × 0.40 × 0.07 mm

Data collection

  • Stoe Stadi-4 four-circle diffractometer
  • 3452 measured reflections
  • 2987 independent reflections
  • 1866 reflections with I > 2σ(I)
  • R int = 0.099
  • 3 standard reflections every 60 min intensity decay: 3.7%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.072
  • wR(F 2) = 0.205
  • S = 1.06
  • 2987 reflections
  • 235 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: STADI4 (Stoe & Cie, 1997 [triangle]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Bruker, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810046301/jj2063sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046301/jj2063Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant FA–F3–T012).

supplementary crystallographic information

Comment

Benzoxazolin-2-one and its derivatives were found in rye seedlings, roots of Coix Lacryma Jobi L. and Scoporia dulcus and possess physiological activity (Tang et al., 1975; Chen & Chen, 1976; Smissman et al., 1957). Acylation of benzoxazolin-2-ones using FeCl3.6H2O as a catalyst, in low yields, has been demonstrated (Mukhamedov et al., 1994). Our efforts toward acylation of benzoxazolin-2-one derivatives, containing an additional aromatic ring, has led to the synthesis of the title compound, (I), C21H14ClNO3.

In the title compound,(I), the benzoxazolone ring system is planar with an r.m.s. deviation of 0.022 Å. The dihedral angles between the mean planes of the benzoxazolone ring system and benzyl plane (r.m.s.deviation of 0.023Å) is 65.92 (13)° (Fig. 2). The carbonyl group is twisted by 61.6 (3)° relative to the mean plane of the chlorophenyl group. The dihedral angle between the benzoxazolone ring system and chlorophenyl plane (r.m.s. deviation of 0.045 Å) is 75.38 (10)°. Bond distances and angles are in normal ranges (Allen et al., 1987). The observed structure is stabilized by weak C—H···O hydrogen bonds (Table 1). In addition, weak C–H···π-ring intermolecular interactions are also observed (Fig. 3) [H11A···Cg1ii = 2.92Å; C11···Cg1ii = 3.474 (7)Å; C11—H11A···Cg1ii = 119°; where Cg1 = C16–C21; ii = -1/2 +x, 1/2 - y, 1/2 + z].

Experimental

To a powder of 3-benzylbenzoxazolin-2-one (2.25 g, 10 mmol) was added 2-chloro-benzoylchloride (2.625 g, 1.899 ml, d=1.382 g/ml, 15 mmol) and FeCl3.6H2O (0,027 g, 0.1 mmol) as a catalyst (Fig. 1). The reaction mixture was heated to 423–433 K for 4 h. After cooling, the product was washed with water and re-crystallized from ethanol. The title compound with m.p. 401–403 K was obtained in a yield of 80% (3.2 g). Crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation.

Refinement

Carbon-bound H atoms were positioned geometrically and treated as riding on their C atoms, with C—H distances of 0.93 Å (aromatic) and 0.97 Å (CH2) and were refined with Uiso(H) =1.2Ueq(C). All other non-H atoms were refined anisotropically.

Figures

Fig. 1.
The reaction scheme for (I).
Fig. 2.
The molecular structure of the title compound,(I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Fig. 3.
Packing diagram of the title compound, showing weak C—H···O hydrogen bonds and weak C–H···π-ring intermolecular interactions (dashed lines).

Crystal data

C21H14ClNO3F(000) = 752
Mr = 363.78Dx = 1.408 Mg m3
Monoclinic, P21/nMelting point: 401(2) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 13.391 (7) ÅCell parameters from 32 reflections
b = 7.317 (6) Åθ = 5–15°
c = 18.611 (9) ŵ = 0.24 mm1
β = 109.72 (4)°T = 293 K
V = 1716.6 (19) Å3Plate, colourless
Z = 40.80 × 0.40 × 0.07 mm

Data collection

Stoe Stadi-4 four-circle diffractometerRint = 0.099
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.6°
graphiteh = −15→14
Scan width (ω) = 0.90 – 1.71, scan ratio 2θ:ω = 1.00 I(Net) and sigma(I) calculated according to Blessing (1987)k = 0→8
3452 measured reflectionsl = 0→22
2987 independent reflections3 standard reflections every 60 min
1866 reflections with I > 2σ(I) intensity decay: 3.7%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.205H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0725P)2 + 2.8897P] where P = (Fo2 + 2Fc2)/3
2987 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.88491 (10)0.2399 (2)0.04201 (8)0.0687 (4)
O10.6161 (3)0.7278 (4)0.13219 (19)0.0572 (9)
O20.6094 (3)0.8327 (5)0.2452 (2)0.0766 (11)
O30.6181 (3)0.3656 (5)−0.10981 (19)0.0663 (10)
C20.6132 (4)0.7045 (7)0.2053 (3)0.0559 (12)
N30.6172 (3)0.5233 (5)0.2211 (2)0.0519 (10)
C4A0.6211 (3)0.4250 (6)0.1587 (3)0.0490 (11)
C40.6275 (3)0.2415 (6)0.1450 (3)0.0489 (11)
H4A0.62620.15380.18080.059*
C50.6361 (3)0.1930 (6)0.0752 (3)0.0506 (11)
H5A0.64000.06990.06400.061*
C60.6391 (3)0.3256 (6)0.0204 (2)0.0460 (11)
C70.6294 (3)0.5111 (6)0.0358 (3)0.0500 (11)
H7A0.62830.60100.00020.060*
C7A0.6219 (3)0.5538 (6)0.1039 (3)0.0485 (11)
C80.6265 (4)0.4485 (8)0.2965 (3)0.0615 (13)
H8A0.64850.54600.33390.074*
H8B0.68210.35680.31010.074*
C90.5278 (4)0.3645 (6)0.3019 (2)0.0497 (11)
C100.4392 (4)0.4682 (7)0.2953 (3)0.0591 (13)
H10A0.43870.59170.28330.071*
C110.3516 (4)0.3913 (9)0.3061 (3)0.0722 (16)
H11A0.29270.46330.30210.087*
C120.3507 (5)0.2090 (9)0.3226 (3)0.0807 (17)
H12A0.29140.15700.32970.097*
C130.4371 (6)0.1042 (8)0.3286 (3)0.0806 (17)
H13A0.4360−0.02000.33900.097*
C140.5260 (5)0.1800 (8)0.3196 (3)0.0698 (15)
H14A0.58520.10760.32530.084*
C150.6501 (3)0.2713 (6)−0.0531 (2)0.0451 (10)
C160.7044 (4)0.0938 (6)−0.0560 (3)0.0505 (11)
C170.8106 (4)0.0622 (7)−0.0113 (3)0.0518 (11)
C180.8569 (5)−0.1045 (8)−0.0133 (3)0.0679 (15)
H18A0.9267−0.12600.01750.081*
C190.8000 (6)−0.2389 (8)−0.0608 (4)0.0817 (19)
H19A0.8317−0.3515−0.06170.098*
C200.6969 (6)−0.2108 (8)−0.1073 (3)0.0741 (17)
H20A0.6593−0.3025−0.13980.089*
C210.6500 (5)−0.0431 (7)−0.1046 (3)0.0653 (14)
H21A0.5806−0.0224−0.13620.078*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0556 (7)0.0825 (10)0.0667 (8)−0.0025 (7)0.0188 (6)−0.0065 (7)
O10.070 (2)0.0443 (19)0.067 (2)−0.0005 (15)0.0354 (17)−0.0036 (16)
O20.093 (3)0.063 (2)0.084 (3)0.004 (2)0.043 (2)−0.019 (2)
O30.080 (2)0.071 (2)0.051 (2)0.0075 (19)0.0250 (17)0.0077 (18)
C20.047 (3)0.057 (3)0.064 (3)−0.001 (2)0.019 (2)−0.010 (3)
N30.057 (2)0.050 (2)0.052 (2)0.0041 (18)0.0221 (18)−0.0039 (18)
C4A0.044 (3)0.049 (3)0.058 (3)0.002 (2)0.022 (2)0.000 (2)
C40.050 (3)0.046 (3)0.055 (3)0.000 (2)0.023 (2)0.002 (2)
C50.052 (3)0.049 (3)0.057 (3)−0.001 (2)0.027 (2)−0.002 (2)
C60.044 (2)0.047 (3)0.049 (3)0.003 (2)0.019 (2)0.005 (2)
C70.050 (3)0.049 (3)0.056 (3)−0.001 (2)0.025 (2)0.007 (2)
C7A0.048 (3)0.044 (3)0.060 (3)0.000 (2)0.027 (2)−0.002 (2)
C80.052 (3)0.080 (4)0.050 (3)0.010 (3)0.015 (2)−0.009 (3)
C90.057 (3)0.054 (3)0.041 (2)0.002 (2)0.020 (2)−0.005 (2)
C100.059 (3)0.062 (3)0.062 (3)0.010 (2)0.027 (2)−0.002 (2)
C110.069 (4)0.097 (5)0.060 (3)0.002 (3)0.034 (3)−0.013 (3)
C120.091 (5)0.087 (5)0.075 (4)−0.022 (4)0.041 (3)−0.007 (3)
C130.115 (5)0.059 (4)0.077 (4)−0.009 (4)0.045 (4)0.006 (3)
C140.096 (4)0.059 (3)0.063 (3)0.013 (3)0.038 (3)0.000 (3)
C150.041 (2)0.058 (3)0.040 (2)−0.001 (2)0.0185 (18)0.003 (2)
C160.056 (3)0.052 (3)0.053 (3)−0.003 (2)0.031 (2)−0.001 (2)
C170.059 (3)0.056 (3)0.049 (3)0.001 (2)0.028 (2)0.001 (2)
C180.082 (4)0.064 (4)0.071 (4)0.016 (3)0.044 (3)0.009 (3)
C190.122 (6)0.049 (3)0.102 (5)0.013 (4)0.073 (5)0.006 (3)
C200.119 (5)0.060 (4)0.066 (4)−0.022 (3)0.059 (4)−0.015 (3)
C210.075 (4)0.064 (4)0.064 (3)−0.015 (3)0.033 (3)−0.013 (3)

Geometric parameters (Å, °)

Cl1—C171.732 (5)C9—C141.392 (7)
O1—C21.384 (6)C10—C111.376 (7)
O1—C7A1.390 (5)C10—H10A0.9300
O2—C21.209 (6)C11—C121.370 (8)
O3—C151.212 (5)C11—H11A0.9300
C2—N31.355 (6)C12—C131.360 (9)
N3—C4A1.381 (6)C12—H12A0.9300
N3—C81.472 (6)C13—C141.374 (8)
C4A—C41.375 (6)C13—H13A0.9300
C4A—C7A1.392 (6)C14—H14A0.9300
C4—C51.388 (6)C15—C161.498 (6)
C4—H4A0.9300C16—C211.381 (7)
C5—C61.417 (6)C16—C171.403 (6)
C5—H5A0.9300C17—C181.375 (7)
C6—C71.402 (6)C18—C191.370 (8)
C6—C151.480 (6)C18—H18A0.9300
C7—C7A1.341 (6)C19—C201.375 (9)
C7—H7A0.9300C19—H19A0.9300
C8—C91.491 (7)C20—C211.386 (8)
C8—H8A0.9700C20—H20A0.9300
C8—H8B0.9700C21—H21A0.9300
C9—C101.378 (6)
C2—O1—C7A106.5 (4)C11—C10—H10A119.6
O2—C2—N3129.2 (5)C9—C10—H10A119.6
O2—C2—O1122.0 (5)C12—C11—C10120.2 (6)
N3—C2—O1108.8 (4)C12—C11—H11A119.9
C2—N3—C4A109.7 (4)C10—C11—H11A119.9
C2—N3—C8123.8 (4)C13—C12—C11119.7 (6)
C4A—N3—C8126.3 (4)C13—C12—H12A120.1
C4—C4A—N3133.4 (4)C11—C12—H12A120.1
C4—C4A—C7A120.5 (4)C12—C13—C14120.7 (6)
N3—C4A—C7A106.0 (4)C12—C13—H13A119.7
C4A—C4—C5117.0 (4)C14—C13—H13A119.7
C4A—C4—H4A121.5C13—C14—C9120.4 (5)
C5—C4—H4A121.5C13—C14—H14A119.8
C4—C5—C6122.0 (4)C9—C14—H14A119.8
C4—C5—H5A119.0O3—C15—C6122.4 (4)
C6—C5—H5A119.0O3—C15—C16119.7 (4)
C7—C6—C5119.3 (4)C6—C15—C16117.8 (4)
C7—C6—C15119.6 (4)C21—C16—C17118.2 (5)
C5—C6—C15121.1 (4)C21—C16—C15119.8 (4)
C7A—C7—C6117.3 (4)C17—C16—C15121.9 (4)
C7A—C7—H7A121.3C18—C17—C16120.4 (5)
C6—C7—H7A121.3C18—C17—Cl1120.3 (4)
C7—C7A—O1127.1 (4)C16—C17—Cl1119.2 (4)
C7—C7A—C4A123.9 (4)C19—C18—C17119.8 (6)
O1—C7A—C4A109.1 (4)C19—C18—H18A120.1
N3—C8—C9115.2 (4)C17—C18—H18A120.1
N3—C8—H8A108.5C18—C19—C20121.4 (5)
C9—C8—H8A108.5C18—C19—H19A119.3
N3—C8—H8B108.5C20—C19—H19A119.3
C9—C8—H8B108.5C19—C20—C21118.7 (5)
H8A—C8—H8B107.5C19—C20—H20A120.6
C10—C9—C14118.1 (5)C21—C20—H20A120.6
C10—C9—C8121.5 (5)C16—C21—C20121.4 (6)
C14—C9—C8120.2 (5)C16—C21—H21A119.3
C11—C10—C9120.9 (5)C20—C21—H21A119.3
C7A—O1—C2—O2179.0 (4)N3—C8—C9—C14118.2 (5)
C7A—O1—C2—N30.1 (5)C14—C9—C10—C110.2 (7)
O2—C2—N3—C4A−179.8 (5)C8—C9—C10—C11−175.1 (4)
O1—C2—N3—C4A−1.0 (5)C9—C10—C11—C12−0.9 (8)
O2—C2—N3—C8−5.2 (8)C10—C11—C12—C130.3 (9)
O1—C2—N3—C8173.6 (4)C11—C12—C13—C141.1 (9)
C2—N3—C4A—C4178.8 (5)C12—C13—C14—C9−1.8 (9)
C8—N3—C4A—C44.4 (8)C10—C9—C14—C131.2 (7)
C2—N3—C4A—C7A1.5 (5)C8—C9—C14—C13176.5 (5)
C8—N3—C4A—C7A−173.0 (4)C7—C6—C15—O3−24.5 (6)
N3—C4A—C4—C5−176.3 (4)C5—C6—C15—O3154.4 (4)
C7A—C4A—C4—C50.8 (7)C7—C6—C15—C16154.7 (4)
C4A—C4—C5—C60.5 (6)C5—C6—C15—C16−26.4 (6)
C4—C5—C6—C7−2.2 (6)O3—C15—C16—C21−61.6 (6)
C4—C5—C6—C15178.9 (4)C6—C15—C16—C21119.1 (5)
C5—C6—C7—C7A2.6 (6)O3—C15—C16—C17117.3 (5)
C15—C6—C7—C7A−178.6 (4)C6—C15—C16—C17−62.0 (5)
C6—C7—C7A—O1177.2 (4)C21—C16—C17—C18−3.3 (7)
C6—C7—C7A—C4A−1.3 (7)C15—C16—C17—C18177.8 (4)
C2—O1—C7A—C7−177.9 (4)C21—C16—C17—Cl1172.8 (4)
C2—O1—C7A—C4A0.8 (5)C15—C16—C17—Cl1−6.1 (6)
C4—C4A—C7A—C7−0.4 (7)C16—C17—C18—C191.8 (7)
N3—C4A—C7A—C7177.4 (4)Cl1—C17—C18—C19−174.2 (4)
C4—C4A—C7A—O1−179.2 (4)C17—C18—C19—C200.3 (8)
N3—C4A—C7A—O1−1.4 (5)C18—C19—C20—C21−0.9 (8)
C2—N3—C8—C9106.2 (5)C17—C16—C21—C202.8 (7)
C4A—N3—C8—C9−80.1 (6)C15—C16—C21—C20−178.3 (4)
N3—C8—C9—C10−66.6 (6)C19—C20—C21—C16−0.7 (8)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14A···O2i0.932.593.266 (8)130
C20—H20A···O3i0.932.593.269 (8)130
C11—H11A···Cg1ii0.932.923.474 (7)119

Symmetry codes: (i) x, y−1, z; (ii) x−1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2063).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bredenberg, J. B., Honkanen, E. & Virtanen, A. I. (1962). Acta Chem. Scand.16, 135–141.
  • Bruker (1998). XP. Bruker AXS Ins., Madison, Wisconsin, USA.
  • Chen, Ch. M. & Chen, M. T. (1976). Phytochemistry, 15, 1997–1999.
  • Groth, P. (1973). Acta Chem. Scand.15, 945–969.
  • Honkanen, E. & Virtanen, A. I. (1961). Acta Chem. Scand.15, 221–222.
  • Işık, Ş., Köysal, Y., Yavuz, M., Köksal, M. & Erdoğan, H. (2004). Acta Cryst. E60, o2321–o2323.
  • Mukhamedov, N. S., Kristallovich, E. L., Plugar, V. N., Giyasov, K., Aliyev, N. A. & Abdullayev, N. D. (1994). Chem. Heterocycl. Compd, 30, 982–984.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smissman, E., Lapidus, B. & Beck, D. (1957). J. Am. Chem. Soc.79, 4697–4699.
  • Stoe & Cie (1997). STADI4 and X-RED Stoe & Cie, Darmstadt, Germany.
  • Tang, Ch. S., Chang, H., Hoo, D. & &Yanagihara, K. H. (1975). Phytochemistry, 14, 2077–2079.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography