PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3083.
Published online 2010 November 6. doi:  10.1107/S1600536810044673
PMCID: PMC3011396

Benzene-1,3,5-tricarb­oxy­lic acid–1,10-bis­(1,2,4-triazol-1-yl)deca­ne–water (1/1/2)

Abstract

In the title 1:1:2 association, C14H24N6·C9H6O6·2H2O, the alkyl chain in the 1,10-bis­(1,2,4-triazol-1-yl)decane mol­ecule adopts an extended conformation and the dihedral angle between the aromatic rings is 10.28 (13)°. The benzene-1,3,5-tricarb­oxy­lic acid mol­ecule is close to being planar (r.m.s. deviation = 0.052 Å). In the crystal, the components are linked by O—H(...)O and O—H(...)N hydrogen bonds, generating a layered network.

Related literature

For backgound to supra­molecular networks, see: Ma & Coppens (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3083-scheme1.jpg

Experimental

Crystal data

  • C14H24N6·C9H6O6·2H2O
  • M r = 522.56
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3083-efi1.jpg
  • a = 10.7715 (6) Å
  • b = 11.4405 (6) Å
  • c = 11.7458 (6) Å
  • α = 101.790 (4)°
  • β = 105.800 (4)°
  • γ = 92.740 (4)°
  • V = 1355.13 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.32 × 0.29 × 0.2 mm

Data collection

  • Oxford Diffraction Gemini R Ultra CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis CCD; Oxford Diffraction, 2006 [triangle]) T min = 0.952, T max = 0.984
  • 8774 measured reflections
  • 4921 independent reflections
  • 1989 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.052
  • S = 0.88
  • 4921 reflections
  • 355 parameters
  • 9 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810044673/hb5722sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044673/hb5722Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks BoHai University for support.

supplementary crystallographic information

Comment

There are numerous framework building blocks from benzene-1,3,5-tricarboxylic acid in the synthesis of organic supramlecular solids because of its rigidity and triangular geometry (Ma & Coppens, 2003). Up to now, the bis(1,2,4-triazol-1-yl)decane ligand, as a flexible ligand, is rarely investigated in constructing supramlecular compounds.

In the crystal structure of the title compound, (I), there are one benzene-1,3,5-tricarboxylic acid, one bis(1,2,4-triazol-1-yl)decane and two water molecules (Fig. 1). O1W water molelcule acts as both acceptor and donor, forming three hydrogen bonds, which link adjacent benzene-1,3,5-tricarboxylic acid molecules. As well as O2W water molecule, which also acts as both acceptor and donor, linking two adjacent benzene-1,3,5-tricarboxylic acid and one adjacent bis(1,2,4-triazol-1-yl)decane molecules. Thus, benzene-1,3,5-tricarboxylic acid and bis(1,2,4-triazol-1-yl)decane molecules are linked through strong intermolecular O—H···O and O—H···N interactions, forming a two dimensional supramolecular layer (Fig. 2).

Experimental

Benzene-1,3,5-tricarboxylic acid (0.042 g, 0.2 mmol) and bis(1,2,4-triazol-1-yl)decane (0.055 g, 0.2 mmol) was added in a beaker of a methanol (10 ml) and water (5 ml) solution. The mixture was heated to 60 °C and held at that temperature for 10 minutes, then cooled to room temperature and filtered. The filtrate was left in a beaker for two days and colourless blocks of (I) were isolated.

Refinement

C–bound H–atoms were geometrically positioned (C—H 0.93 Å) and refined using a riding model, with Uiso = 1.2Ueq (C). The water H atoms were located in a difference Fourier map and refined with Uiso(H)= 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
C—H···O interactions (dotted lines) in the crystal of the title compound.

Crystal data

C14H24N6·C9H6O6·2H2OZ = 2
Mr = 522.56F(000) = 556
Triclinic, P1Dx = 1.281 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.7715 (6) ÅCell parameters from 4921 reflections
b = 11.4405 (6) Åθ = 3.0–25.4°
c = 11.7458 (6) ŵ = 0.10 mm1
α = 101.790 (4)°T = 293 K
β = 105.800 (4)°Block, colorless
γ = 92.740 (4)°0.32 × 0.29 × 0.2 mm
V = 1355.13 (12) Å3

Data collection

Oxford Diffraction Gemini R Ultra CCD diffractometer4921 independent reflections
Radiation source: fine-focus sealed tube1989 reflections with I > 2σ(I)
graphiteRint = 0.030
Detector resolution: 10.0 pixels mm-1θmax = 25.4°, θmin = 3.1°
ω scanh = −12→11
Absorption correction: multi-scan (CrysAlis CCD; Oxford Diffraction, 2006)k = −10→13
Tmin = 0.952, Tmax = 0.984l = −14→11
8774 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 0.88w = 1/[σ2(Fo2) + (0.0072P)2] where P = (Fo2 + 2Fc2)/3
4921 reflections(Δ/σ)max = 0.001
355 parametersΔρmax = 0.13 e Å3
9 restraintsΔρmin = −0.12 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.39170 (19)0.95737 (17)0.80707 (17)0.0449 (5)
C20.52268 (18)0.95284 (16)0.81530 (16)0.0493 (6)
H20.58291.01740.86250.059*
C30.56376 (19)0.85253 (17)0.75336 (18)0.0470 (5)
C40.47358 (19)0.75609 (17)0.68424 (18)0.0520 (6)
H40.50100.68870.64280.062*
C50.34384 (19)0.75882 (17)0.67614 (17)0.0480 (6)
C60.30284 (18)0.86009 (17)0.73798 (17)0.0502 (6)
H60.21530.86230.73280.060*
C70.2450 (2)0.65651 (19)0.6038 (2)0.0570 (6)
C80.7031 (2)0.8428 (2)0.7614 (2)0.0571 (6)
C100.3452 (2)1.06481 (18)0.87083 (19)0.0542 (6)
C110.7731 (2)1.65574 (19)0.9521 (2)0.0672 (7)
H110.84211.71420.99510.081*
C120.58551 (19)1.56741 (18)0.88510 (19)0.0610 (6)
H120.49671.54730.86880.073*
C130.63731 (19)1.38270 (17)0.7527 (2)0.0719 (7)
H13A0.68841.32620.79090.086*
H13B0.66451.39000.68200.086*
C140.49697 (19)1.33401 (16)0.71237 (19)0.0626 (6)
H14A0.44571.38810.67030.075*
H14B0.46821.32920.78290.075*
C150.47559 (18)1.20989 (16)0.62827 (18)0.0619 (6)
H15A0.50701.21500.55930.074*
H15B0.52621.15610.67130.074*
C160.33408 (18)1.15749 (16)0.58242 (18)0.0585 (6)
H16A0.28381.21030.53770.070*
H16B0.30211.15410.65140.070*
C170.31336 (17)1.03190 (15)0.50045 (18)0.0577 (6)
H17A0.34381.03560.43070.069*
H17B0.36500.97950.54460.069*
C180.17162 (18)0.97804 (16)0.45616 (18)0.0639 (6)
H18A0.11991.03030.41170.077*
H18B0.14100.97440.52590.077*
C190.15155 (18)0.85218 (15)0.37448 (19)0.0625 (6)
H19A0.17210.85720.30010.075*
H19B0.21110.80250.41520.075*
C200.01312 (18)0.79255 (16)0.34285 (19)0.0675 (7)
H20A−0.04600.83900.29690.081*
H20B−0.00970.79250.41720.081*
C21−0.00327 (18)0.66361 (16)0.26872 (19)0.0631 (6)
H21A0.01400.66370.19190.076*
H21B0.05890.61790.31240.076*
C22−0.13937 (18)0.60470 (17)0.24526 (19)0.0650 (6)
H22A−0.15470.60150.32230.078*
H22B−0.20130.65340.20590.078*
C23−0.0785 (2)0.4098 (2)0.1410 (2)0.0772 (8)
H230.01100.42970.16430.093*
C24−0.2628 (2)0.3200 (2)0.0669 (2)0.0728 (7)
H24−0.33020.25970.02470.087*
N1−0.28416 (16)0.42595 (17)0.12176 (17)0.0691 (6)
N2−0.16118 (17)0.48321 (14)0.16904 (15)0.0574 (5)
N3−0.13877 (18)0.30359 (15)0.07500 (18)0.0791 (6)
N40.66373 (17)1.49947 (14)0.83772 (15)0.0575 (5)
N50.78695 (16)1.55567 (16)0.88053 (17)0.0691 (6)
N60.65112 (17)1.66695 (14)0.95827 (15)0.0599 (5)
O10.13154 (14)0.65517 (12)0.59815 (14)0.0793 (5)
O20.29321 (14)0.56664 (13)0.54589 (15)0.0802 (5)
O30.73875 (13)0.75585 (13)0.70565 (14)0.0801 (5)
O40.78183 (13)0.93484 (14)0.83381 (16)0.0771 (5)
O50.43572 (13)1.15486 (12)0.92566 (13)0.0646 (4)
O60.23315 (14)1.06863 (11)0.87170 (14)0.0758 (5)
O1W0.12775 (14)0.38874 (15)0.41955 (18)0.0959 (6)
O2W1.02243 (15)0.90437 (15)0.8626 (2)0.1207 (8)
H2WA0.234 (2)0.506 (2)0.502 (3)0.181*
H4WA0.863 (2)0.925 (2)0.834 (3)0.181*
H5WA0.398 (3)1.223 (2)0.966 (2)0.181*
H1AW0.156 (3)0.333 (2)0.372 (3)0.181*
H1BW0.055 (2)0.368 (2)0.410 (3)0.181*
H2BW1.046 (3)0.855 (2)0.914 (3)0.181*
H2AW1.075 (3)0.956 (2)0.863 (3)0.181*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0427 (13)0.0458 (13)0.0470 (15)0.0068 (11)0.0156 (11)0.0084 (11)
C20.0460 (14)0.0494 (14)0.0501 (15)0.0031 (11)0.0144 (11)0.0056 (11)
C30.0434 (13)0.0477 (14)0.0523 (16)0.0036 (11)0.0188 (12)0.0105 (11)
C40.0589 (15)0.0506 (14)0.0528 (15)0.0144 (12)0.0246 (12)0.0126 (12)
C50.0432 (13)0.0477 (14)0.0529 (16)0.0007 (11)0.0168 (12)0.0079 (11)
C60.0442 (13)0.0530 (14)0.0566 (15)0.0087 (12)0.0211 (12)0.0101 (12)
C70.0574 (15)0.0597 (16)0.0553 (16)0.0080 (13)0.0227 (14)0.0072 (12)
C80.0507 (15)0.0543 (16)0.0676 (18)0.0066 (13)0.0199 (14)0.0126 (13)
C100.0519 (15)0.0519 (15)0.0586 (16)0.0098 (13)0.0181 (13)0.0086 (12)
C110.0554 (16)0.0580 (16)0.0782 (19)−0.0045 (12)0.0161 (13)−0.0004 (13)
C120.0492 (14)0.0534 (15)0.0747 (18)0.0044 (13)0.0211 (13)−0.0027 (13)
C130.0639 (16)0.0571 (15)0.0881 (19)0.0031 (12)0.0339 (14)−0.0140 (13)
C140.0600 (14)0.0530 (14)0.0712 (17)0.0043 (11)0.0241 (13)−0.0002 (12)
C150.0668 (15)0.0513 (14)0.0644 (16)0.0018 (12)0.0249 (13)−0.0011 (12)
C160.0605 (14)0.0504 (14)0.0605 (16)0.0053 (11)0.0173 (12)0.0039 (12)
C170.0586 (14)0.0502 (14)0.0635 (16)0.0066 (11)0.0203 (13)0.0074 (12)
C180.0599 (15)0.0530 (14)0.0733 (17)0.0078 (12)0.0173 (13)0.0046 (12)
C190.0606 (14)0.0459 (14)0.0729 (17)0.0028 (11)0.0161 (13)0.0003 (12)
C200.0549 (14)0.0544 (14)0.0822 (18)0.0061 (12)0.0140 (13)−0.0015 (13)
C210.0476 (13)0.0589 (15)0.0730 (17)−0.0009 (11)0.0119 (12)0.0016 (12)
C220.0559 (14)0.0609 (15)0.0743 (18)0.0046 (12)0.0240 (13)−0.0004 (13)
C230.0478 (15)0.0671 (17)0.106 (2)−0.0039 (14)0.0263 (15)−0.0060 (15)
C240.0560 (17)0.0624 (18)0.091 (2)−0.0045 (13)0.0150 (15)0.0085 (15)
N10.0416 (12)0.0656 (14)0.0920 (16)−0.0026 (10)0.0160 (11)0.0063 (12)
N20.0434 (11)0.0559 (12)0.0693 (14)0.0004 (10)0.0183 (10)0.0048 (10)
N30.0551 (13)0.0640 (14)0.1077 (18)−0.0014 (11)0.0248 (12)−0.0043 (12)
N40.0485 (11)0.0497 (12)0.0717 (14)0.0026 (10)0.0239 (11)−0.0004 (10)
N50.0495 (12)0.0647 (13)0.0877 (16)−0.0023 (10)0.0268 (11)−0.0024 (11)
N60.0509 (11)0.0511 (12)0.0702 (14)0.0031 (10)0.0169 (10)−0.0018 (10)
O10.0527 (10)0.0750 (11)0.1005 (14)−0.0047 (9)0.0280 (10)−0.0074 (9)
O20.0658 (11)0.0609 (11)0.1015 (14)−0.0001 (8)0.0298 (10)−0.0152 (9)
O30.0644 (10)0.0710 (11)0.1045 (13)0.0199 (8)0.0378 (10)−0.0021 (9)
O40.0471 (9)0.0732 (11)0.1037 (13)0.0061 (9)0.0265 (10)−0.0024 (10)
O50.0498 (9)0.0534 (10)0.0814 (12)0.0018 (8)0.0216 (8)−0.0077 (8)
O60.0500 (9)0.0625 (10)0.1115 (14)0.0059 (8)0.0364 (10)−0.0054 (8)
O1W0.0561 (11)0.0839 (12)0.1221 (16)−0.0023 (10)0.0295 (11)−0.0366 (10)
O2W0.0487 (11)0.0888 (16)0.228 (3)0.0104 (9)0.0399 (14)0.0417 (14)

Geometric parameters (Å, °)

C1—C61.385 (2)C16—H16A0.9700
C1—C21.392 (2)C16—H16B0.9700
C1—C101.487 (2)C17—C181.526 (2)
C2—C31.387 (2)C17—H17A0.9700
C2—H20.9300C17—H17B0.9700
C3—C41.386 (2)C18—C191.528 (2)
C3—C81.489 (2)C18—H18A0.9700
C4—C51.377 (2)C18—H18B0.9700
C4—H40.9300C19—C201.525 (2)
C5—C61.395 (2)C19—H19A0.9700
C5—C71.486 (2)C19—H19B0.9700
C6—H60.9300C20—C211.527 (2)
C7—O11.205 (2)C20—H20A0.9700
C7—O21.322 (2)C20—H20B0.9700
C8—O31.214 (2)C21—C221.513 (2)
C8—O41.307 (2)C21—H21A0.9700
C10—O61.212 (2)C21—H21B0.9700
C10—O51.311 (2)C22—N21.461 (2)
C11—N51.316 (2)C22—H22A0.9700
C11—N61.346 (2)C22—H22B0.9700
C11—H110.9300C23—N21.314 (2)
C12—N61.314 (2)C23—N31.329 (2)
C12—N41.328 (2)C23—H230.9300
C12—H120.9300C24—N11.314 (2)
C13—N41.458 (2)C24—N31.339 (2)
C13—C141.497 (2)C24—H240.9300
C13—H13A0.9700N1—N21.3639 (19)
C13—H13B0.9700N4—N51.3605 (19)
C14—C151.522 (2)O2—H2WA0.89 (2)
C14—H14A0.9700O4—H4WA0.88 (2)
C14—H14B0.9700O5—H5WA0.99 (2)
C15—C161.519 (2)O1W—H1AW0.87 (2)
C15—H15A0.9700O1W—H1BW0.78 (2)
C15—H15B0.9700O2W—H2BW0.90 (2)
C16—C171.526 (2)O2W—H2AW0.799 (19)
C6—C1—C2119.46 (16)C18—C17—C16113.00 (14)
C6—C1—C10119.30 (18)C18—C17—H17A109.0
C2—C1—C10121.24 (19)C16—C17—H17A109.0
C3—C2—C1120.31 (18)C18—C17—H17B109.0
C3—C2—H2119.8C16—C17—H17B109.0
C1—C2—H2119.8H17A—C17—H17B107.8
C4—C3—C2119.53 (18)C17—C18—C19112.76 (15)
C4—C3—C8118.28 (18)C17—C18—H18A109.0
C2—C3—C8122.2 (2)C19—C18—H18A109.0
C5—C4—C3120.81 (17)C17—C18—H18B109.0
C5—C4—H4119.6C19—C18—H18B109.0
C3—C4—H4119.6H18A—C18—H18B107.8
C4—C5—C6119.48 (18)C20—C19—C18112.65 (15)
C4—C5—C7122.12 (18)C20—C19—H19A109.1
C6—C5—C7118.39 (18)C18—C19—H19A109.1
C1—C6—C5120.40 (17)C20—C19—H19B109.1
C1—C6—H6119.8C18—C19—H19B109.1
C5—C6—H6119.8H19A—C19—H19B107.8
O1—C7—O2123.0 (2)C19—C20—C21112.14 (15)
O1—C7—C5123.4 (2)C19—C20—H20A109.2
O2—C7—C5113.60 (19)C21—C20—H20A109.2
O3—C8—O4123.8 (2)C19—C20—H20B109.2
O3—C8—C3122.1 (2)C21—C20—H20B109.2
O4—C8—C3114.10 (18)H20A—C20—H20B107.9
O6—C10—O5123.06 (17)C22—C21—C20110.80 (15)
O6—C10—C1122.80 (19)C22—C21—H21A109.5
O5—C10—C1114.14 (18)C20—C21—H21A109.5
N5—C11—N6114.77 (18)C22—C21—H21B109.5
N5—C11—H11122.6C20—C21—H21B109.5
N6—C11—H11122.6H21A—C21—H21B108.1
N6—C12—N4110.51 (17)N2—C22—C21112.51 (15)
N6—C12—H12124.7N2—C22—H22A109.1
N4—C12—H12124.7C21—C22—H22A109.1
N4—C13—C14112.99 (16)N2—C22—H22B109.1
N4—C13—H13A109.0C21—C22—H22B109.1
C14—C13—H13A109.0H22A—C22—H22B107.8
N4—C13—H13B109.0N2—C23—N3111.44 (18)
C14—C13—H13B109.0N2—C23—H23124.3
H13A—C13—H13B107.8N3—C23—H23124.3
C13—C14—C15110.88 (15)N1—C24—N3116.33 (19)
C13—C14—H14A109.5N1—C24—H24121.8
C15—C14—H14A109.5N3—C24—H24121.8
C13—C14—H14B109.5C24—N1—N2101.48 (16)
C15—C14—H14B109.5C23—N2—N1109.43 (17)
H14A—C14—H14B108.1C23—N2—C22130.70 (18)
C16—C15—C14113.00 (15)N1—N2—C22119.71 (17)
C16—C15—H15A109.0C23—N3—C24101.32 (16)
C14—C15—H15A109.0C12—N4—N5109.42 (16)
C16—C15—H15B109.0C12—N4—C13131.08 (18)
C14—C15—H15B109.0N5—N4—C13119.50 (16)
H15A—C15—H15B107.8C11—N5—N4102.27 (16)
C15—C16—C17112.87 (15)C12—N6—C11103.03 (15)
C15—C16—H16A109.0C7—O2—H2WA113.3 (18)
C17—C16—H16A109.0C8—O4—H4WA110.7 (18)
C15—C16—H16B109.0C10—O5—H5WA109.7 (17)
C17—C16—H16B109.0H1AW—O1W—H1BW107 (2)
H16A—C16—H16B107.8H2BW—O2W—H2AW119 (3)
C6—C1—C2—C31.0 (3)C14—C15—C16—C17−178.69 (16)
C10—C1—C2—C3−178.88 (19)C15—C16—C17—C18178.91 (18)
C1—C2—C3—C4−0.7 (3)C16—C17—C18—C19−179.83 (16)
C1—C2—C3—C8−178.80 (19)C17—C18—C19—C20173.05 (17)
C2—C3—C4—C50.1 (3)C18—C19—C20—C21−175.94 (18)
C8—C3—C4—C5178.27 (19)C19—C20—C21—C22176.65 (18)
C3—C4—C5—C60.2 (3)C20—C21—C22—N2176.96 (17)
C3—C4—C5—C7−179.40 (19)N3—C24—N1—N20.4 (3)
C2—C1—C6—C5−0.6 (3)N3—C23—N2—N10.5 (3)
C10—C1—C6—C5179.24 (17)N3—C23—N2—C22175.8 (2)
C4—C5—C6—C10.0 (3)C24—N1—N2—C23−0.5 (2)
C7—C5—C6—C1179.65 (18)C24—N1—N2—C22−176.39 (18)
C4—C5—C7—O1177.7 (2)C21—C22—N2—C2316.7 (3)
C6—C5—C7—O1−1.9 (3)C21—C22—N2—N1−168.43 (18)
C4—C5—C7—O2−2.3 (3)N2—C23—N3—C24−0.2 (3)
C6—C5—C7—O2178.06 (18)N1—C24—N3—C23−0.1 (3)
C4—C3—C8—O33.1 (3)N6—C12—N4—N5−0.1 (3)
C2—C3—C8—O3−178.8 (2)N6—C12—N4—C13−179.88 (19)
C4—C3—C8—O4−176.32 (19)C14—C13—N4—C120.9 (3)
C2—C3—C8—O41.8 (3)C14—C13—N4—N5−178.88 (18)
C6—C1—C10—O64.9 (3)N6—C11—N5—N40.3 (3)
C2—C1—C10—O6−175.3 (2)C12—N4—N5—C11−0.1 (2)
C6—C1—C10—O5−174.98 (18)C13—N4—N5—C11179.71 (18)
C2—C1—C10—O54.9 (3)N4—C12—N6—C110.3 (2)
N4—C13—C14—C15−177.54 (17)N5—C11—N6—C12−0.3 (3)
C13—C14—C15—C16−178.73 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2WA···O1W0.89 (2)1.66 (2)2.549 (2)177 (3)
O4—H4WA···O2W0.88 (2)1.70 (2)2.571 (2)169 (3)
O5—H5WA···N6i0.99 (2)1.59 (2)2.5750 (19)174 (3)
O1W—H1AW···O3ii0.87 (2)1.86 (2)2.711 (2)163 (3)
O1W—H1BW···O1iii0.78 (2)1.99 (2)2.757 (2)170 (3)
O2W—H2BW···N3ii0.90 (2)2.12 (2)2.875 (2)140 (3)
O2W—H2AW···O6iv0.80 (2)2.05 (2)2.841 (2)170 (3)

Symmetry codes: (i) −x+1, −y+3, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z+1; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5722).

References

  • Ma, B.-Q. & Coppens, P. (2003). Chem. Commun. pp. 2290–2291. [PubMed]
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography