PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3119.
Published online 2010 November 10. doi:  10.1107/S1600536810045150
PMCID: PMC3011394

Diethyl 2-[(4-bromo­anilino)methyl­idene]malonate

Abstract

In the title compound, C14H16BrNO4, inter­molecular C—H(...)O hydrogen bonds link the mol­ecules, forming a stable structure. An intra­molecular N—H(...)O hydrogen bond results in the formation of a six-membered ring and helps to establish the mol­ecular conformation which is almost planar, with an r.m.s deviation of 0.0842 Å.

Related literature

For the preparation, see: Lager et al. (2006 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3119-scheme1.jpg

Experimental

Crystal data

  • C14H16BrNO4
  • M r = 342.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3119-efi1.jpg
  • a = 9.2440 (18) Å
  • b = 6.5000 (13) Å
  • c = 13.448 (3) Å
  • β = 110.10 (3)°
  • V = 758.8 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.72 mm−1
  • T = 293 K
  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.496, T max = 0.773
  • 2851 measured reflections
  • 2790 independent reflections
  • 1606 reflections with I > 2σ(I)
  • R int = 0.071
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.154
  • S = 1.00
  • 2790 reflections
  • 181 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.39 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1253 Friedel pairs
  • Flack parameter: −0.01 (2)

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXL97; software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045150/bq2249sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045150/bq2249Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

supplementary crystallographic information

Comment

We report herein the crystal structure of the title compound, diethyl 2-((4-bromophenylamino)methylene)malonate which is an important intermediate of synthesizing pyrazoloquinolinones. In the molecule of the title compound (Fig. 1), all bond lengths and angles (Allen et al., 1987) are within normal ranges. The intramolecular N-H···O hydrogen bond (Table 1) results in the formation of a six-membered ring (N/C7/C8/C12/O3/H0A). In the crystal structure, intermolecular weak C-H···O hydrogen bonds link the molecules to form a stable structure (Fig. 2).

Experimental

The title compound, diethyl 2-((4-bromophenylamino)methylene)malonate was prepared by the literature method (Lager et al., 2006). 4-bromoaniline (1.2 mmol) and diethyl ethoxymethylenemalonate (1.2 mmol) were mixed and heated at 403 K for 2 h. Low boiling components were evaporated at low pressure with a cold trap yielding diethyl 2-((4-bromophenylamino) methylene)malonate. The crude product was purified by recrystallization from diethyl ether yielding the title compound (73 % yield), as a white solid. Crystals suitable for X-ray analysis were obtained by slow evaporation of an methanol solution.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.98 and 0.96 Å for aromatic, methine and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines show H-bonding.
Fig. 2.
A packing diagram of the title compound. Hydrogen bonds are shown as dashed line.

Crystal data

C14H16BrNO4F(000) = 348
Mr = 342.19Dx = 1.498 Mg m3
Monoclinic, P21Melting point: 367 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 9.2440 (18) ÅCell parameters from 25 reflections
b = 6.5000 (13) Åθ = 9–14°
c = 13.448 (3) ŵ = 2.72 mm1
β = 110.10 (3)°T = 293 K
V = 758.8 (3) Å3Needle, colourless
Z = 20.30 × 0.10 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer1606 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.071
graphiteθmax = 25.4°, θmin = 1.6°
ω/2θ scansh = −11→11
Absorption correction: ψ scan (North et al., 1968)k = −7→7
Tmin = 0.496, Tmax = 0.773l = −5→16
2851 measured reflections3 standard reflections every 200 reflections
2790 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.154w = 1/[σ2(Fo2) + (0.078P)2 + ] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2790 reflectionsΔρmax = 0.49 e Å3
181 parametersΔρmin = −0.39 e Å3
1 restraintAbsolute structure: Flack (1983), 1253 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.01 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.96900 (11)0.78434 (19)0.08931 (9)0.1008 (4)
N0.7057 (7)0.0195 (9)0.2183 (5)0.0626 (16)
H0A0.6242−0.02490.16970.075*
C10.7111 (8)0.2666 (15)0.0881 (6)0.0691 (19)
H1A0.63180.19440.03870.083*
O10.8800 (8)−0.2964 (10)0.4901 (5)0.116 (3)
O20.7014 (6)−0.5254 (9)0.4487 (4)0.0768 (15)
C20.7701 (9)0.4458 (13)0.0594 (6)0.068 (2)
H2A0.72800.4973−0.00910.082*
C30.8892 (9)0.5442 (11)0.1320 (8)0.069 (2)
O30.4955 (6)−0.2676 (8)0.1562 (5)0.0859 (18)
C40.9487 (9)0.4794 (12)0.2343 (7)0.068 (2)
H4A1.02760.55320.28320.082*
O40.4944 (6)−0.5243 (8)0.2634 (4)0.0673 (13)
C50.8899 (8)0.2992 (19)0.2660 (5)0.066 (2)
H5A0.93010.25200.33540.079*
C60.7740 (8)0.1980 (10)0.1930 (6)0.0558 (19)
C70.7510 (8)−0.0856 (11)0.3061 (6)0.0521 (17)
H7A0.8348−0.03340.36080.062*
C80.6869 (8)−0.2699 (11)0.3269 (6)0.062 (2)
C90.7662 (9)−0.3565 (13)0.4292 (6)0.0594 (19)
C100.7736 (9)−0.6258 (12)0.5497 (6)0.072 (2)
H10A0.7952−0.52730.60710.086*
H10B0.8694−0.69070.55240.086*
C110.6597 (12)−0.7843 (17)0.5578 (9)0.124 (5)
H11A0.7005−0.85440.62440.186*
H11B0.6411−0.88170.50110.186*
H11C0.5648−0.71780.55300.186*
C120.5544 (9)−0.3509 (12)0.2415 (6)0.0586 (18)
C130.3642 (9)−0.6084 (13)0.1829 (6)0.079 (2)
H13A0.3922−0.65430.12330.094*
H13B0.2832−0.50630.15810.094*
C140.3121 (12)−0.7836 (14)0.2315 (8)0.105 (4)
H14A0.2224−0.84420.18050.157*
H14B0.2872−0.73630.29130.157*
H14C0.3927−0.88440.25430.157*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.0966 (6)0.0669 (5)0.1532 (9)−0.0125 (6)0.0612 (6)0.0184 (7)
N0.051 (4)0.065 (4)0.065 (4)−0.003 (3)0.011 (3)0.000 (3)
C10.072 (5)0.056 (5)0.079 (5)0.008 (5)0.024 (4)0.012 (5)
O10.098 (5)0.119 (6)0.091 (4)−0.047 (4)−0.019 (4)0.038 (4)
O20.056 (3)0.080 (4)0.085 (4)−0.008 (3)0.013 (3)0.031 (3)
C20.060 (5)0.073 (5)0.074 (5)0.008 (4)0.026 (4)0.026 (4)
C30.057 (5)0.045 (4)0.108 (7)−0.014 (4)0.034 (5)−0.009 (5)
O30.078 (4)0.071 (5)0.088 (4)−0.021 (3)0.002 (3)0.013 (3)
C40.058 (5)0.060 (5)0.087 (6)−0.003 (4)0.026 (5)−0.006 (5)
O40.067 (3)0.059 (3)0.077 (3)−0.010 (3)0.026 (3)0.000 (3)
C50.064 (4)0.072 (5)0.058 (4)0.022 (6)0.014 (4)0.023 (5)
C60.059 (4)0.042 (3)0.076 (5)−0.016 (3)0.036 (4)−0.015 (4)
C70.047 (4)0.055 (4)0.055 (5)0.007 (3)0.019 (4)0.002 (3)
C80.052 (4)0.058 (6)0.088 (6)−0.002 (3)0.040 (4)−0.008 (4)
C90.052 (5)0.074 (5)0.040 (4)−0.009 (4)0.001 (4)0.000 (4)
C100.061 (5)0.075 (5)0.072 (5)0.003 (4)0.013 (4)0.028 (4)
C110.087 (6)0.132 (11)0.157 (9)0.002 (6)0.048 (7)0.075 (9)
C120.061 (5)0.063 (5)0.058 (5)0.011 (4)0.029 (4)0.014 (4)
C130.065 (5)0.086 (6)0.073 (5)−0.022 (5)0.009 (4)−0.022 (5)
C140.118 (8)0.083 (7)0.140 (9)−0.035 (6)0.080 (7)−0.024 (6)

Geometric parameters (Å, °)

Br—C31.898 (7)C5—C61.349 (11)
N—C71.302 (8)C5—H5A0.9300
N—C61.417 (9)C7—C81.407 (9)
N—H0A0.8600C7—H7A0.9300
C1—C21.396 (11)C8—C91.432 (10)
C1—C61.401 (10)C8—C121.459 (11)
C1—H1A0.9300C10—C111.503 (11)
O1—C91.157 (8)C10—H10A0.9700
O2—C91.320 (9)C10—H10B0.9700
O2—C101.446 (8)C11—H11A0.9600
C2—C31.356 (11)C11—H11B0.9600
C2—H2A0.9300C11—H11C0.9600
C3—C41.361 (11)C13—C141.474 (11)
O3—C121.215 (8)C13—H13A0.9700
C4—C51.417 (14)C13—H13B0.9700
C4—H4A0.9300C14—H14A0.9600
O4—C121.333 (8)C14—H14B0.9600
O4—C131.423 (8)C14—H14C0.9600
C7—N—C6128.0 (6)O1—C9—C8126.0 (8)
C7—N—H0A116.0O2—C9—C8113.6 (7)
C6—N—H0A116.0O2—C10—C11105.6 (7)
C2—C1—C6118.6 (8)O2—C10—H10A110.6
C2—C1—H1A120.7C11—C10—H10A110.6
C6—C1—H1A120.7O2—C10—H10B110.6
C9—O2—C10117.9 (6)C11—C10—H10B110.6
C3—C2—C1119.5 (8)H10A—C10—H10B108.8
C3—C2—H2A120.3C10—C11—H11A109.5
C1—C2—H2A120.3C10—C11—H11B109.5
C2—C3—C4121.9 (7)H11A—C11—H11B109.5
C2—C3—Br118.3 (7)C10—C11—H11C109.5
C4—C3—Br119.8 (6)H11A—C11—H11C109.5
C3—C4—C5119.8 (7)H11B—C11—H11C109.5
C3—C4—H4A120.1O3—C12—O4120.0 (7)
C5—C4—H4A120.1O3—C12—C8124.4 (7)
C12—O4—C13117.7 (6)O4—C12—C8115.6 (6)
C6—C5—C4118.3 (7)O4—C13—C14106.2 (7)
C6—C5—H5A120.8O4—C13—H13A110.5
C4—C5—H5A120.8C14—C13—H13A110.5
C5—C6—C1121.9 (7)O4—C13—H13B110.5
C5—C6—N122.1 (7)C14—C13—H13B110.5
C1—C6—N116.0 (7)H13A—C13—H13B108.7
N—C7—C8126.9 (7)C13—C14—H14A109.5
N—C7—H7A116.5C13—C14—H14B109.5
C8—C7—H7A116.5H14A—C14—H14B109.5
C7—C8—C9114.5 (7)C13—C14—H14C109.5
C7—C8—C12116.6 (7)H14A—C14—H14C109.5
C9—C8—C12128.9 (6)H14B—C14—H14C109.5
O1—C9—O2120.3 (7)
C6—C1—C2—C32.2 (11)C10—O2—C9—O12.6 (12)
C1—C2—C3—C4−3.4 (11)C10—O2—C9—C8179.5 (6)
C1—C2—C3—Br178.8 (6)C7—C8—C9—O1−5.5 (11)
C2—C3—C4—C52.7 (12)C12—C8—C9—O1171.8 (9)
Br—C3—C4—C5−179.5 (6)C7—C8—C9—O2177.9 (6)
C3—C4—C5—C6−0.8 (12)C12—C8—C9—O2−4.9 (11)
C4—C5—C6—C1−0.3 (11)C9—O2—C10—C11169.0 (7)
C4—C5—C6—N−178.4 (7)C13—O4—C12—O31.8 (9)
C2—C1—C6—C5−0.4 (11)C13—O4—C12—C8179.5 (6)
C2—C1—C6—N177.8 (6)C7—C8—C12—O3−1.7 (10)
C7—N—C6—C5−8.8 (11)C9—C8—C12—O3−178.9 (7)
C7—N—C6—C1173.0 (7)C7—C8—C12—O4−179.3 (5)
C6—N—C7—C8−175.6 (6)C9—C8—C12—O43.5 (10)
N—C7—C8—C9176.9 (7)C12—O4—C13—C14−173.9 (6)
N—C7—C8—C12−0.7 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N—H0A···O30.861.952.615 (8)134
C1—H1A···O3i0.932.493.190 (10)132
C5—H5A···O1ii0.932.423.298 (9)157

Symmetry codes: (i) −x+1, y+1/2, −z; (ii) −x+2, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2249).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Lager, E., Andersson, P., Nilsson, J., Pettersson, I., Østergaard Nielsen, E., Nielsen, M., Sterner, O. & Liljefors, T. (2006). J. Med. Chem.49, 2526–2533. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography