PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3065.
Published online 2010 November 6. doi:  10.1107/S1600536810044223
PMCID: PMC3011392

3-(4-Chloro­phenyl­sulfon­yl)-2,5-dimethyl-1-benzofuran

Abstract

In the title compound, C16H13ClO3S, the 4-chloro­phenyl ring makes a dihedral angle of 79.96 (5)° with the mean plane of the benzofuran fragment. In the crystal, mol­ecules are linked through weak inter­molecular C—H(...)O and C—H(...)π inter­actions.

Related literature

For the biological activity of benzofuran compounds, see: Aslam et al. (2006 [triangle]); Galal et al. (2009 [triangle]); Khan et al. (2005 [triangle]). For natural products with benzofuran rings, see: Akgul & Anil (2003 [triangle]); Soekamto et al. (2003 [triangle]). For our previous structural studies of related 3-(4-chloro­phenyl­sulfin­yl)-2,5-dimethyl-1-benzofuran derivatives, see: Choi et al. (2010a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3065-scheme1.jpg

Experimental

Crystal data

  • C16H13ClO3S
  • M r = 320.77
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3065-efi5.jpg
  • a = 15.3529 (3) Å
  • b = 12.1495 (2) Å
  • c = 8.2663 (2) Å
  • β = 105.363 (1)°
  • V = 1486.82 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.40 mm−1
  • T = 177 K
  • 0.37 × 0.23 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.867, T max = 0.962
  • 13864 measured reflections
  • 3398 independent reflections
  • 2655 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.107
  • S = 1.06
  • 3398 reflections
  • 192 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810044223/ng5054sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044223/ng5054Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Blue-Bio Industry RIC at Dongeui University as an RIC programme under the Ministry of Knowledge Economy and Busan city.

supplementary crystallographic information

Comment

A series of benzofuran ring system has received much attention in view of their particular pharmacological properties such as antifungal, antimicrobial, antitumor and antiviral activities (Aslam et al., 2006; Galal et al., 2009; Khan et al., 2005). These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 3-(4-chlorophenylsulfinyl)-2,5-dimethyl-1-benzofuran analogues (Choi et al., 2010a,b), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.003 (1 ) Å from the least-squares plane defined by the nine constituent atoms. The 4-chlorophenyl ring makes a dihedral angle of 79.96 (5)° with the mean plane of the benzofuran ring. The crystal packing (Fig. 2) is stabilized by weak intermolecular C–H···O hydrogen bonds: the first one between a benzene H atom and the furan O atom (Table 1, C6–H6···O1i), and the second one between a methyl H atom and the oxygen of the O═S═O unit (Table 1, C10–H10A···O2ii). The crystal packing (Fig. 2) is further stabilized by an intermolecular C–H···π interaction between the 4-chlorophenyl H atom and the benzene ring (Table 1; C13–H13···Cgiii, Cg is the centroid of the C2–C7 benzene ring).

Experimental

77% 3-chloroperoxybenzoic acid (269 mg, 1.2 mmol) was added in small portions to a stirred solution of 3-(4-chlorophenylsulfanyl)-2,5-dimethyl-1-benzofuran (346 mg, 1.2 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 6h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (benzene) to afford the title compound as a colorless solid [yield 81%, m.p. 428-429 K; Rf = 0.59 (benzene)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
A view of the C–H···O and C–H···π interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the centroid of the C2-C7 benzene ring. [Symmetry codes: (i) ...

Crystal data

C16H13ClO3SF(000) = 664
Mr = 320.77Dx = 1.433 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P_2ybcCell parameters from 4847 reflections
a = 15.3529 (3) Åθ = 2.8–27.5°
b = 12.1495 (2) ŵ = 0.40 mm1
c = 8.2663 (2) ÅT = 177 K
β = 105.363 (1)°Block, colourless
V = 1486.82 (5) Å30.37 × 0.23 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer3398 independent reflections
Radiation source: rotating anode2655 reflections with I > 2σ(I)
graphite multilayerRint = 0.033
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.4°
[var phi] and ω scansh = −19→19
Absorption correction: multi-scan (SADABS; Bruker, 2009)k = −15→14
Tmin = 0.867, Tmax = 0.962l = −10→10
13864 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.107H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0506P)2 + 0.4243P] where P = (Fo2 + 2Fc2)/3
3398 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl0.48342 (4)0.92660 (5)0.73305 (10)0.0705 (2)
S0.17974 (3)0.58289 (4)0.44925 (5)0.03028 (14)
O10.04560 (8)0.56425 (10)0.79164 (16)0.0336 (3)
O20.11294 (8)0.63535 (12)0.31700 (15)0.0417 (3)
O30.22166 (9)0.48321 (11)0.41515 (15)0.0384 (3)
C10.13384 (11)0.55688 (14)0.6156 (2)0.0282 (4)
C20.17212 (10)0.48293 (14)0.75339 (19)0.0265 (4)
C30.24701 (11)0.41325 (14)0.7986 (2)0.0286 (4)
H30.28720.40700.72930.034*
C40.26171 (11)0.35337 (15)0.9461 (2)0.0305 (4)
C50.20127 (12)0.36427 (16)1.0465 (2)0.0336 (4)
H50.21200.32261.14710.040*
C60.12720 (12)0.43281 (15)1.0054 (2)0.0346 (4)
H60.08710.44001.07480.041*
C70.11476 (11)0.49046 (15)0.8570 (2)0.0287 (4)
C80.05880 (11)0.60332 (15)0.6451 (2)0.0312 (4)
C90.34169 (13)0.27807 (18)0.9993 (2)0.0426 (5)
H9A0.32510.20450.95270.064*
H9B0.36080.27381.12200.064*
H9C0.39140.30680.95790.064*
C10−0.00891 (12)0.68520 (16)0.5565 (3)0.0403 (5)
H10A0.00300.75620.61450.060*
H10B−0.06960.65980.55580.060*
H10C−0.00480.69360.44090.060*
C110.26643 (11)0.67929 (14)0.5303 (2)0.0285 (4)
C120.24350 (12)0.78759 (16)0.5522 (2)0.0372 (4)
H120.18180.80920.52430.045*
C130.31025 (13)0.86365 (16)0.6145 (3)0.0409 (5)
H130.29540.93810.63010.049*
C140.39885 (13)0.83017 (17)0.6538 (3)0.0418 (5)
C150.42284 (13)0.72285 (18)0.6332 (3)0.0527 (6)
H150.48460.70160.66160.063*
C160.35555 (12)0.64652 (17)0.5705 (3)0.0435 (5)
H160.37060.57210.55520.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.0463 (3)0.0523 (4)0.1062 (6)−0.0155 (3)0.0085 (3)−0.0142 (3)
S0.0351 (2)0.0300 (3)0.0243 (2)0.00103 (18)0.00535 (17)0.00088 (17)
O10.0275 (6)0.0353 (7)0.0396 (7)−0.0011 (5)0.0114 (5)−0.0041 (6)
O20.0411 (7)0.0475 (9)0.0302 (7)0.0000 (6)−0.0013 (5)0.0064 (6)
O30.0524 (8)0.0333 (7)0.0313 (6)0.0023 (6)0.0143 (6)−0.0041 (6)
C10.0294 (8)0.0253 (9)0.0285 (8)−0.0018 (7)0.0050 (7)−0.0015 (7)
C20.0294 (8)0.0247 (9)0.0251 (8)−0.0053 (7)0.0066 (6)−0.0032 (7)
C30.0312 (8)0.0280 (9)0.0281 (8)0.0004 (7)0.0105 (7)−0.0024 (7)
C40.0328 (9)0.0276 (9)0.0294 (8)−0.0032 (7)0.0050 (7)−0.0005 (7)
C50.0402 (10)0.0331 (10)0.0276 (8)−0.0092 (8)0.0090 (7)0.0012 (8)
C60.0358 (9)0.0377 (11)0.0340 (9)−0.0083 (8)0.0160 (8)−0.0043 (8)
C70.0254 (8)0.0279 (9)0.0333 (9)−0.0036 (7)0.0086 (7)−0.0050 (7)
C80.0288 (8)0.0283 (9)0.0338 (9)−0.0042 (7)0.0039 (7)−0.0053 (8)
C90.0444 (11)0.0420 (12)0.0403 (10)0.0056 (9)0.0092 (9)0.0095 (9)
C100.0325 (9)0.0334 (11)0.0498 (11)0.0038 (8)0.0016 (8)−0.0051 (9)
C110.0325 (8)0.0277 (9)0.0254 (8)0.0027 (7)0.0076 (7)0.0041 (7)
C120.0316 (9)0.0315 (10)0.0471 (11)0.0065 (8)0.0082 (8)0.0035 (9)
C130.0429 (10)0.0281 (10)0.0522 (12)0.0023 (8)0.0134 (9)0.0013 (9)
C140.0361 (10)0.0380 (11)0.0490 (11)−0.0068 (8)0.0074 (8)−0.0018 (9)
C150.0299 (10)0.0440 (13)0.0790 (16)0.0052 (9)0.0055 (10)−0.0068 (12)
C160.0358 (10)0.0337 (11)0.0591 (13)0.0073 (8)0.0092 (9)−0.0028 (10)

Geometric parameters (Å, °)

Cl—C141.743 (2)C6—H60.9500
S—O31.4339 (14)C8—C101.484 (2)
S—O21.4350 (13)C9—H9A0.9800
S—C11.7319 (17)C9—H9B0.9800
S—C111.7664 (18)C9—H9C0.9800
O1—C81.366 (2)C10—H10A0.9800
O1—C71.385 (2)C10—H10B0.9800
C1—C81.362 (2)C10—H10C0.9800
C1—C21.448 (2)C11—C161.378 (2)
C2—C71.384 (2)C11—C121.386 (3)
C2—C31.397 (2)C12—C131.375 (3)
C3—C41.386 (2)C12—H120.9500
C3—H30.9500C13—C141.374 (3)
C4—C51.406 (2)C13—H130.9500
C4—C91.501 (2)C14—C151.378 (3)
C5—C61.377 (3)C15—C161.383 (3)
C5—H50.9500C15—H150.9500
C6—C71.381 (3)C16—H160.9500
O3—S—O2119.53 (8)C4—C9—H9A109.5
O3—S—C1107.47 (8)C4—C9—H9B109.5
O2—S—C1109.07 (8)H9A—C9—H9B109.5
O3—S—C11107.60 (8)C4—C9—H9C109.5
O2—S—C11108.01 (8)H9A—C9—H9C109.5
C1—S—C11104.12 (8)H9B—C9—H9C109.5
C8—O1—C7107.00 (13)C8—C10—H10A109.5
C8—C1—C2107.60 (15)C8—C10—H10B109.5
C8—C1—S127.45 (14)H10A—C10—H10B109.5
C2—C1—S124.91 (13)C8—C10—H10C109.5
C7—C2—C3119.21 (15)H10A—C10—H10C109.5
C7—C2—C1104.70 (15)H10B—C10—H10C109.5
C3—C2—C1136.09 (15)C16—C11—C12120.86 (17)
C4—C3—C2118.96 (15)C16—C11—S119.99 (14)
C4—C3—H3120.5C12—C11—S119.15 (13)
C2—C3—H3120.5C13—C12—C11119.80 (17)
C3—C4—C5119.40 (16)C13—C12—H12120.1
C3—C4—C9120.51 (16)C11—C12—H12120.1
C5—C4—C9120.09 (16)C14—C13—C12118.87 (18)
C6—C5—C4122.84 (16)C14—C13—H13120.6
C6—C5—H5118.6C12—C13—H13120.6
C4—C5—H5118.6C13—C14—C15122.10 (18)
C5—C6—C7115.89 (16)C13—C14—Cl118.84 (16)
C5—C6—H6122.1C15—C14—Cl119.06 (15)
C7—C6—H6122.1C14—C15—C16118.91 (18)
C6—C7—C2123.71 (16)C14—C15—H15120.5
C6—C7—O1125.86 (15)C16—C15—H15120.5
C2—C7—O1110.43 (15)C11—C16—C15119.46 (18)
C1—C8—O1110.27 (15)C11—C16—H16120.3
C1—C8—C10134.82 (17)C15—C16—H16120.3
O1—C8—C10114.91 (15)
O3—S—C1—C8−148.80 (16)C8—O1—C7—C20.37 (18)
O2—S—C1—C8−17.84 (19)C2—C1—C8—O1−0.30 (19)
C11—S—C1—C897.26 (17)S—C1—C8—O1−178.16 (12)
O3—S—C1—C233.69 (16)C2—C1—C8—C10178.95 (18)
O2—S—C1—C2164.64 (14)S—C1—C8—C101.1 (3)
C11—S—C1—C2−80.26 (15)C7—O1—C8—C1−0.03 (18)
C8—C1—C2—C70.51 (18)C7—O1—C8—C10−179.45 (14)
S—C1—C2—C7178.44 (13)O3—S—C11—C16−8.62 (18)
C8—C1—C2—C3−179.35 (18)O2—S—C11—C16−138.91 (15)
S—C1—C2—C3−1.4 (3)C1—S—C11—C16105.24 (16)
C7—C2—C3—C40.1 (2)O3—S—C11—C12171.21 (14)
C1—C2—C3—C4179.94 (18)O2—S—C11—C1240.92 (17)
C2—C3—C4—C5−0.1 (2)C1—S—C11—C12−74.93 (16)
C2—C3—C4—C9−179.70 (16)C16—C11—C12—C130.1 (3)
C3—C4—C5—C6−0.2 (3)S—C11—C12—C13−179.71 (14)
C9—C4—C5—C6179.34 (17)C11—C12—C13—C140.0 (3)
C4—C5—C6—C70.6 (3)C12—C13—C14—C15−0.2 (3)
C5—C6—C7—C2−0.6 (3)C12—C13—C14—Cl−179.91 (15)
C5—C6—C7—O1−179.53 (16)C13—C14—C15—C160.2 (4)
C3—C2—C7—C60.3 (3)Cl—C14—C15—C16179.91 (18)
C1—C2—C7—C6−179.60 (16)C12—C11—C16—C15−0.1 (3)
C3—C2—C7—O1179.35 (14)S—C11—C16—C15179.72 (17)
C1—C2—C7—O1−0.54 (18)C14—C15—C16—C110.0 (3)
C8—O1—C7—C6179.41 (17)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.563.495 (2)167
C10—H10A···O2ii0.982.433.279 (2)145
C13—H13···Cgiii0.952.743.411 (2)128

Symmetry codes: (i) −x, −y+1, −z+2; (ii) x, −y+3/2, z+1/2; (iii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5054).

References

  • Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [PubMed]
  • Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.
  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o2325. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o2551. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [PubMed]
  • Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796–4805. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography