PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3085.
Published online 2010 November 6. doi:  10.1107/S1600536810044442
PMCID: PMC3011391

Bis[(5-phenyl-1,3,4-thia­diazol-2-yl)sulfan­yl]methane

Abstract

The asymmetric unit of the title compound, C17H12N4S4, contains one half-mol­ecule situated on a twofold rotational axis. In the mol­ecule, the thia­diazole and attached phenyl rings are twisted by 5.8 (3)°.

Related literature

For biological activity of 1,3,4-thia­diazole derivatives, see: Nakagawa et al. (1996 [triangle]); Wang et al. (1999 [triangle]); Carvalho et al. (2004 [triangle]); Riente et al. (2009 [triangle]); Poorrajab et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3085-scheme1.jpg

Experimental

Crystal data

  • C17H12N4S4
  • M r = 400.55
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3085-efi1.jpg
  • a = 10.805 (2) Å
  • b = 19.287 (4) Å
  • c = 4.0738 (8) Å
  • V = 848.9 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.57 mm−1
  • T = 113 K
  • 0.20 × 0.18 × 0.10 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005 [triangle]) T min = 0.895, T max = 0.945
  • 6754 measured reflections
  • 1477 independent reflections
  • 1421 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.124
  • S = 1.03
  • 1477 reflections
  • 115 parameters
  • H-atom parameters constrained
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.55 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 554 Friedel pairs
  • Flack parameter: 0.16 (14)

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810044442/cv2783sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044442/cv2783Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Doctoral Foundation of Huanggang Normal University (grant No. 09CD155).

supplementary crystallographic information

Comment

1,3,4-Thiadiazole derivatives attracted considerable attention due to their broad spectrum of chemical and pharmaceutical properties (Nakagawa et al., 1996; Wang et al., 1999), with particular attention being paid to the anti-trypanosomal activities of Megazol and related compounds (Carvalho et al., 2004; Riente et al., 2009; Poorrajab et al., 2009). Herewith we report the synthesis and crystal structure of the title compound, (I), a new 1,3,4-thiadiazole derivative.

The molecular structure of (I) is shown in Fig.1. In the crystal structure, the molecule is situated on a two-fold rotational axis so asymmetric unit contains a half of the molecule. 1,3,4-Thiadiazole ring is planar with an r.m.s. deviation of 0.0048 (2)Å and maximum deviation of 0.0072 (2)Å for atom C7. The dihedral angle between the thiadiazole and attached phenyl rings is 5.8 (3)°. As a result of π-π conjugation, the Csp2-S bond length [S2—C8 = 1.751 (3) Å] is significantly shorter than the Csp3-S bond length [S2—C9 = 1.810 (2) Å].

Experimental

A suspension of 5-diphenyl-1,3,4-thiadiazol-2-thiol (2.0 mmol) and 1,1-dibromomethane (1.0 mmol) in ethanol (10 ml) was stirred at room temperature. The reaction progress was monitored via TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as light yellow solid in 95% yield. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1).

Refinement

All H atoms were positioned geometrically and refined as riding (C—H = 0.95–0.99 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent).

Figures

Fig. 1.
View of (I) showing the atom-labelling scheme and 35% probability displacement ellipsoids [symmetry code: (A) = -x,-y + 1,z].

Crystal data

C17H12N4S4F(000) = 412
Mr = 400.55Dx = 1.567 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 2856 reflections
a = 10.805 (2) Åθ = 2.1–27.9°
b = 19.287 (4) ŵ = 0.57 mm1
c = 4.0738 (8) ÅT = 113 K
V = 848.9 (3) Å3Prism, colourless
Z = 20.20 × 0.18 × 0.10 mm

Data collection

Rigaku Saturn CCD area-detector diffractometer1477 independent reflections
Radiation source: rotating anode1421 reflections with I > 2σ(I)
confocalRint = 0.028
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.1°
[var phi] and ω scansh = −12→12
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)k = −22→22
Tmin = 0.895, Tmax = 0.945l = −4→4
6754 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029w = 1/[σ2(Fo2) + (0.110P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.124(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.54 e Å3
1477 reflectionsΔρmin = −0.55 e Å3
115 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.049 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 554 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.16 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.19317 (6)0.33910 (3)0.3294 (2)0.0215 (3)
S20.13644 (6)0.47579 (4)0.6577 (2)0.0216 (3)
N1−0.0251 (2)0.29797 (13)0.4770 (7)0.0223 (6)
N2−0.0161 (2)0.36481 (13)0.6002 (7)0.0231 (6)
C1−0.0141 (3)0.16581 (16)0.1495 (9)0.0260 (7)
H1−0.09040.17950.24530.031*
C2−0.0048 (3)0.10272 (16)−0.0079 (9)0.0289 (8)
H2−0.07480.0731−0.02060.035*
C30.1073 (3)0.08236 (15)−0.1485 (9)0.0279 (7)
H30.11360.0389−0.25680.033*
C40.2085 (3)0.12546 (15)−0.1299 (9)0.0262 (7)
H40.28470.1117−0.22640.031*
C50.1999 (3)0.18852 (16)0.0284 (8)0.0234 (7)
H50.27040.21780.04200.028*
C60.0885 (3)0.20960 (14)0.1682 (8)0.0196 (6)
C70.0747 (2)0.27771 (15)0.3277 (7)0.0181 (6)
C80.0919 (3)0.39217 (14)0.5395 (8)0.0192 (7)
C90.00000.50000.8888 (11)0.0229 (10)
H9A0.02230.53941.03300.027*0.50
H9B−0.02230.46061.03300.027*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0163 (4)0.0229 (4)0.0252 (5)−0.0010 (3)0.0012 (4)−0.0011 (3)
S20.0221 (4)0.0204 (4)0.0223 (5)−0.0011 (3)−0.0018 (4)0.0005 (3)
N10.0199 (12)0.0197 (12)0.0273 (14)0.0005 (9)−0.0006 (12)0.0018 (12)
N20.0229 (12)0.0200 (12)0.0263 (15)0.0006 (10)0.0035 (11)−0.0007 (12)
C10.0198 (14)0.0279 (15)0.0303 (18)0.0002 (11)0.0039 (16)0.0029 (17)
C20.0258 (14)0.0254 (15)0.036 (2)−0.0019 (12)−0.0060 (17)−0.0012 (16)
C30.0374 (17)0.0206 (13)0.0257 (17)0.0052 (13)0.0029 (17)−0.0019 (15)
C40.0244 (14)0.0254 (14)0.0289 (18)0.0079 (12)0.0013 (15)0.0031 (16)
C50.0208 (14)0.0232 (14)0.0260 (17)0.0012 (12)−0.0002 (15)0.0041 (14)
C60.0189 (14)0.0209 (14)0.0191 (15)0.0028 (11)−0.0046 (13)0.0043 (14)
C70.0162 (13)0.0216 (13)0.0166 (14)0.0000 (11)−0.0015 (13)0.0033 (13)
C80.0206 (14)0.0198 (12)0.0170 (15)0.0038 (11)−0.0010 (13)−0.0001 (12)
C90.029 (2)0.0235 (19)0.016 (2)−0.0003 (17)0.0000.000

Geometric parameters (Å, °)

S1—C81.726 (3)C2—H20.9500
S1—C71.744 (3)C3—C41.376 (5)
S2—C81.751 (3)C3—H30.9500
S2—C91.810 (2)C4—C51.380 (5)
N1—C71.298 (4)C4—H40.9500
N1—N21.387 (4)C5—C61.391 (4)
N2—C81.304 (4)C5—H50.9500
C1—C21.379 (5)C6—C71.473 (4)
C1—C61.396 (4)C9—S2i1.810 (2)
C1—H10.9500C9—H9A0.9900
C2—C31.396 (4)C9—H9B0.9900
C8—S1—C786.51 (14)C4—C5—H5119.8
C8—S2—C999.02 (10)C6—C5—H5119.8
C7—N1—N2113.0 (2)C5—C6—C1119.2 (3)
C8—N2—N1111.8 (2)C5—C6—C7121.9 (3)
C2—C1—C6120.1 (3)C1—C6—C7118.9 (3)
C2—C1—H1119.9N1—C7—C6124.0 (3)
C6—C1—H1119.9N1—C7—S1113.8 (2)
C1—C2—C3120.1 (3)C6—C7—S1122.2 (2)
C1—C2—H2119.9N2—C8—S1114.9 (2)
C3—C2—H2119.9N2—C8—S2124.5 (2)
C4—C3—C2119.8 (3)S1—C8—S2120.57 (17)
C4—C3—H3120.1S2—C9—S2i117.3 (2)
C2—C3—H3120.1S2—C9—H9A108.0
C3—C4—C5120.3 (3)S2i—C9—H9A108.0
C3—C4—H4119.9S2—C9—H9B108.0
C5—C4—H4119.9S2i—C9—H9B108.0
C4—C5—C6120.5 (3)H9A—C9—H9B107.2
C7—N1—N2—C8−0.5 (4)C1—C6—C7—N15.7 (5)
C6—C1—C2—C30.1 (5)C5—C6—C7—S14.3 (4)
C1—C2—C3—C40.0 (5)C1—C6—C7—S1−173.9 (3)
C2—C3—C4—C50.3 (6)C8—S1—C7—N1−1.1 (2)
C3—C4—C5—C6−0.6 (5)C8—S1—C7—C6178.6 (3)
C4—C5—C6—C10.7 (5)N1—N2—C8—S1−0.4 (3)
C4—C5—C6—C7−177.6 (3)N1—N2—C8—S2179.9 (2)
C2—C1—C6—C5−0.4 (5)C7—S1—C8—N20.8 (3)
C2—C1—C6—C7177.9 (3)C7—S1—C8—S2−179.5 (2)
N2—N1—C7—C6−178.6 (2)C9—S2—C8—N24.3 (3)
N2—N1—C7—S11.1 (3)C9—S2—C8—S1−175.34 (19)
C5—C6—C7—N1−176.0 (3)C8—S2—C9—S2i−76.74 (11)

Symmetry codes: (i) −x, −y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2783).

References

  • Carvalho, S. A., da Silva, E. F., Santa-Rita, R. M., de Castro, S. L. & Fraga, C. A. M. (2004). Bioorg. Med. Chem. Lett.14, 5967–5970. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci.21, 195–201.
  • Poorrajab, F., Ardestani, S. K., Emami, S., Behrouzi-Fardmoghadam, M., Shafiee, A. & Foroumadi, A. (2009). Eur. J. Med. Chem.44, 1758–1762. [PubMed]
  • Riente, R. R., Souza, V. P., Carvalho, S. A., Kaiser, M., Brum, R. & Silva, E. F. (2009). J. Med. Chem.4, 392–397. [PubMed]
  • Rigaku/MSC (2005). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ.20, 1903–1905.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography