PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1582.
Published online 2010 November 17. doi:  10.1107/S1600536810046040
PMCID: PMC3011389

Bis[μ-3-(1H-benzimidazol-2-yl)benzoato]dicopper(I)

Abstract

The dimeric title complex, [Cu2(C14H9N2O2)2], resides on a center of symmetry. In the crystal, the mol­ecules are packed via π–π stacking inter­actions alternating between imidazole and benzene rings [mean inter­planar distances = 3.754 (3) and 3.624 (3) Å]. An inter­molecular N—H(...)O hydrogen bond links the dimers together. The two-coordinate CuI atom displays an O—Cu—N bond angle of 176.3 (2)°. The Cu(...)Cu distance within the dimer is 5.100 (2) Å.

Related literature

For background to complexes of benzimidazole with copper(I), see: Ruettimann et al. (1992 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1582-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C14H9N2O2)2]
  • M r = 601.54
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1582-efi1.jpg
  • a = 4.875 (2) Å
  • b = 13.417 (7) Å
  • c = 18.130 (9) Å
  • β = 103.643 (12)°
  • V = 1152.4 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.89 mm−1
  • T = 296 K
  • 0.52 × 0.44 × 0.40 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.387, T max = 0.473
  • 7794 measured reflections
  • 2013 independent reflections
  • 1083 reflections with I > 2σ(I)
  • R int = 0.107

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.148
  • S = 1.01
  • 2013 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.69 e Å−3
  • Δρmin = −0.62 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046040/om2365sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046040/om2365Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Talent Fund of Ningbo University (grant No. 2008087) and sponsored by the K. C. Wong Magna Fund of Ningbo University.

supplementary crystallographic information

Comment

The title complex, [Cu(C14H9N2O2)]2, is a dimer and resides on a center of symmetry. The molecular structure is illustrated in Fig. 1. Due to the low coordination number of two for copper(I), the Cu(I)–N and Cu(I)–O bond lengths are somewhat shorter than typical values (Ruettimann et al., 1992).

The dihedral angle between the two planes of C1–C6 and C8–C13 benzene rings is 4.37 (3)°. In the title molecule there is an intermolecular hydrogen bond between N1 and O1 of an adjacent dimer (Table 2 and Fig. 2). The mean interplanar distance of 3.754 (3)Å and 3.624 (3)Å alternately between imidazole and benzene rings suggests that the ligands are engaged in π-π stacking interactions with an offset face-to-face style.

Experimental

Under microwave irradiation, 3-(1H-benzo[d]imidazol-2-yl) benzoic acid was synthesized by condensation of benzene-1,2-diamine and isophthalic acid(1:1) in polyphosphoric acid. The reaction time was 12 min. The yield was 74%. Then recrystallization from methanol gave pure chemical compound. A mixture of 3-(1H-benzo[d]imidazol-2-yl)benzoic acid (0.0476 g,0.2 mmol),Cu(NO3)2.3H2O (0.121 g, 0.5 mmol) and and water (l2 ml) was placed in a Teflon-lined stainless steel vessel (25 ml) and heated at 170 °C for 72 h, and then cooled to room temperature at a rate of 0.1 °C/min. The resulting brown single crystals were isolated by washing with DMF/methanol, and dried in vacuo. It can be seen from the crystal color that the Cu2+ ion was reduced from +2 to +1 oxidation state. The yield was about 37 mg (62 %). Calcd.for C28H18Cu2N4O4: C, 55.86; H, 2.99; N, 9.31; Found: C, 55.92;H, 2.93;N, 9.24%.

Refinement

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
Packing diagram of the title compound.

Crystal data

[Cu2(C14H9N2O2)2]F(000) = 608
Mr = 601.54Dx = 1.734 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1146 reflections
a = 4.875 (2) Åθ = 2.3–21.7°
b = 13.417 (7) ŵ = 1.89 mm1
c = 18.130 (9) ÅT = 296 K
β = 103.643 (12)°Block, brown
V = 1152.4 (10) Å30.52 × 0.44 × 0.40 mm
Z = 2

Data collection

Bruker SMART APEXII diffractometer2013 independent reflections
Radiation source: fine-focus sealed tube1083 reflections with I > 2σ(I)
graphiteRint = 0.107
[var phi] and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −5→4
Tmin = 0.387, Tmax = 0.473k = −15→15
7794 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0617P)2 + 0.5546P] where P = (Fo2 + 2Fc2)/3
2013 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = −0.62 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.09380 (19)0.62278 (7)0.49047 (4)0.0455 (3)
O10.0431 (11)0.6329 (4)0.3136 (3)0.0546 (13)
O20.2212 (11)0.5488 (4)0.4211 (2)0.0528 (14)
N11.0395 (10)0.2257 (4)0.3273 (3)0.0336 (13)
H10.99890.20780.28040.040*
N21.0206 (11)0.3061 (4)0.4335 (3)0.0340 (13)
C11.4326 (14)0.2163 (5)0.5182 (4)0.0433 (18)
H1A1.42750.24970.56280.052*
C21.6298 (14)0.1429 (6)0.5170 (4)0.051 (2)
H21.75830.12630.56200.061*
C31.6418 (15)0.0926 (5)0.4499 (5)0.053 (2)
H31.77860.04380.45160.064*
C41.4583 (14)0.1134 (5)0.3825 (4)0.0433 (18)
H41.46640.08010.33810.052*
C51.2557 (13)0.1879 (5)0.3836 (4)0.0363 (16)
C61.2412 (13)0.2388 (5)0.4501 (4)0.0343 (16)
C70.9009 (13)0.2964 (5)0.3587 (3)0.0339 (16)
C80.6567 (13)0.3523 (4)0.3147 (3)0.0317 (16)
C90.5412 (14)0.3314 (5)0.2385 (4)0.0407 (17)
H90.61920.28120.21450.049*
C100.3124 (14)0.3844 (5)0.1981 (4)0.0472 (19)
H100.23450.36890.14750.057*
C110.1979 (14)0.4609 (5)0.2330 (4)0.0419 (18)
H110.04680.49780.20530.050*
C120.3074 (13)0.4824 (4)0.3086 (3)0.0311 (15)
C130.5339 (13)0.4285 (5)0.3486 (4)0.0347 (16)
H130.60730.44320.39960.042*
C140.1782 (14)0.5627 (5)0.3490 (4)0.0378 (17)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0639 (6)0.0446 (6)0.0288 (5)0.0096 (5)0.0128 (4)−0.0037 (4)
O10.075 (4)0.049 (3)0.042 (3)0.021 (3)0.018 (3)0.008 (2)
O20.083 (4)0.050 (3)0.026 (3)0.022 (3)0.014 (2)0.002 (2)
N10.035 (3)0.036 (3)0.031 (3)0.002 (3)0.009 (3)−0.002 (3)
N20.045 (3)0.032 (3)0.027 (3)0.000 (3)0.012 (3)0.000 (2)
C10.050 (4)0.042 (4)0.039 (4)−0.008 (4)0.012 (3)0.005 (3)
C20.039 (4)0.053 (5)0.054 (5)−0.005 (4)−0.002 (4)0.017 (4)
C30.046 (5)0.039 (5)0.077 (6)0.009 (4)0.019 (4)0.008 (4)
C40.048 (4)0.038 (4)0.047 (4)−0.002 (4)0.018 (3)−0.001 (4)
C50.034 (4)0.035 (4)0.043 (4)−0.002 (3)0.018 (3)0.004 (3)
C60.032 (4)0.040 (4)0.031 (4)0.003 (3)0.009 (3)0.003 (3)
C70.039 (4)0.033 (4)0.031 (4)−0.007 (3)0.012 (3)0.005 (3)
C80.035 (4)0.029 (4)0.032 (4)−0.003 (3)0.012 (3)0.004 (3)
C90.046 (4)0.046 (4)0.031 (4)0.006 (4)0.009 (3)−0.009 (3)
C100.054 (5)0.060 (5)0.026 (4)0.006 (4)0.009 (3)−0.013 (4)
C110.045 (4)0.048 (5)0.032 (4)0.002 (4)0.009 (3)0.003 (3)
C120.039 (4)0.031 (4)0.026 (3)0.001 (3)0.013 (3)−0.001 (3)
C130.044 (4)0.031 (4)0.029 (4)−0.002 (3)0.010 (3)−0.004 (3)
C140.048 (4)0.036 (4)0.031 (4)−0.001 (4)0.011 (3)0.001 (3)

Geometric parameters (Å, °)

Cu1—O21.823 (5)C3—H30.9300
Cu1—N2i1.867 (5)C4—C51.408 (9)
O1—C141.239 (8)C4—H40.9300
O2—C141.287 (7)C5—C61.402 (9)
N1—C71.366 (8)C7—C81.472 (8)
N1—C51.379 (8)C8—C91.393 (9)
N1—H10.8600C8—C131.399 (9)
N2—C71.349 (8)C9—C101.378 (9)
N2—C61.382 (8)C9—H90.9300
N2—Cu1i1.867 (5)C10—C111.391 (9)
C1—C21.380 (9)C10—H100.9300
C1—C61.394 (9)C11—C121.378 (8)
C1—H1A0.9300C11—H110.9300
C2—C31.405 (11)C12—C131.375 (8)
C2—H20.9300C12—C141.520 (9)
C3—C41.363 (10)C13—H130.9300
O2—Cu1—N2i176.3 (2)C1—C6—C5119.8 (6)
C14—O2—Cu1128.4 (4)N2—C7—N1110.3 (5)
C7—N1—C5108.3 (5)N2—C7—C8126.8 (6)
C7—N1—H1125.9N1—C7—C8122.9 (5)
C5—N1—H1125.9C9—C8—C13117.9 (6)
C7—N2—C6106.6 (5)C9—C8—C7121.5 (6)
C7—N2—Cu1i131.1 (5)C13—C8—C7120.6 (6)
C6—N2—Cu1i121.7 (4)C10—C9—C8120.7 (6)
C2—C1—C6117.7 (7)C10—C9—H9119.7
C2—C1—H1A121.2C8—C9—H9119.7
C6—C1—H1A121.2C9—C10—C11120.1 (6)
C1—C2—C3121.8 (7)C9—C10—H10120.0
C1—C2—H2119.1C11—C10—H10120.0
C3—C2—H2119.1C12—C11—C10120.2 (6)
C4—C3—C2121.7 (7)C12—C11—H11119.9
C4—C3—H3119.1C10—C11—H11119.9
C2—C3—H3119.1C13—C12—C11119.3 (6)
C3—C4—C5116.6 (7)C13—C12—C14119.4 (5)
C3—C4—H4121.7C11—C12—C14121.3 (6)
C5—C4—H4121.7C12—C13—C8121.8 (6)
N1—C5—C6105.8 (6)C12—C13—H13119.1
N1—C5—C4131.8 (6)C8—C13—H13119.1
C6—C5—C4122.4 (6)O1—C14—O2125.2 (6)
N2—C6—C1131.2 (6)O1—C14—C12121.2 (6)
N2—C6—C5109.0 (5)O2—C14—C12113.6 (6)
N2i—Cu1—O2—C14−169 (3)C5—N1—C7—N20.2 (7)
C6—C1—C2—C30.6 (10)C5—N1—C7—C8−179.8 (5)
C1—C2—C3—C4−0.3 (11)N2—C7—C8—C9−176.0 (6)
C2—C3—C4—C5−0.1 (10)N1—C7—C8—C94.1 (9)
C7—N1—C5—C60.0 (7)N2—C7—C8—C134.1 (10)
C7—N1—C5—C4179.0 (7)N1—C7—C8—C13−175.8 (6)
C3—C4—C5—N1−178.7 (7)C13—C8—C9—C10−0.2 (10)
C3—C4—C5—C60.1 (10)C7—C8—C9—C10180.0 (6)
C7—N2—C6—C1−179.1 (7)C8—C9—C10—C111.3 (11)
Cu1i—N2—C6—C1−6.9 (10)C9—C10—C11—C12−1.8 (10)
C7—N2—C6—C50.4 (7)C10—C11—C12—C131.1 (10)
Cu1i—N2—C6—C5172.5 (4)C10—C11—C12—C14−177.3 (6)
C2—C1—C6—N2178.8 (6)C11—C12—C13—C80.0 (10)
C2—C1—C6—C5−0.6 (10)C14—C12—C13—C8178.5 (6)
N1—C5—C6—N2−0.2 (7)C9—C8—C13—C12−0.5 (9)
C4—C5—C6—N2−179.3 (5)C7—C8—C13—C12179.4 (6)
N1—C5—C6—C1179.3 (6)Cu1—O2—C14—O11.9 (11)
C4—C5—C6—C10.2 (10)Cu1—O2—C14—C12−177.3 (4)
C6—N2—C7—N1−0.4 (7)C13—C12—C14—O1156.2 (6)
Cu1i—N2—C7—N1−171.5 (4)C11—C12—C14—O1−25.4 (10)
C6—N2—C7—C8179.7 (6)C13—C12—C14—O2−24.5 (9)
Cu1i—N2—C7—C88.6 (10)C11—C12—C14—O2153.9 (7)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.861.952.783 (7)164

Symmetry codes: (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2365).

References

  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ruettimann, S., Piguet, C., Bernardinelli, G., Bocquet, B. & Williams, A. F. (1992). J. Am. Chem. Soc.114, 4230–4237.
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography