PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3057–o3058.
Published online 2010 November 6. doi:  10.1107/S1600536810041863
PMCID: PMC3011383

Bromido(dodecafluorosubphthalo­cyaninato)boron(III)

Abstract

The title compound, C24BBrF12N6 or Br-F12BsubPc (BsubPc is boronsubphtalocyanine), has a bowl-shaped structure with an approximate mol­ecular C 3v symmetry characteristic of boronsubphthalocyanine compounds. In the crystal, mol­ecules are arranged in one-dimensional columns and the boron–subphthalocyanine units within each column are offset and angled in a bowl-to-ligand packing arrangement such that the axial Br atom rests in the aromatic concaved bowl of the neighboring subphthalocyanine with an inter­molecular Br(...)B distance of 3.721 (3) Å.

Related literature

For general background to boronsubphthalocyanines, see: Claessens et al. (2002 [triangle]). For examples of related halogenated boronsubphthalocyanines, see: Morse et al. (2010 [triangle]); Paton et al. (2010 [triangle]); Rodriguez-Morgade et al. (2008 [triangle]); Sharman & van Lier (2005 [triangle]); Ros-Lis et al. (2005 [triangle]); Fuduka et al. (2002 [triangle]); Claessens & Torres (2002 [triangle]). For applications of boronsubphthalocyanines in organic electronics, see: Mutolo et al. (2006 [triangle]); Gommans et al. (2007 [triangle], 2009 [triangle]); Kumar et al. (2009 [triangle]); Ma et al. (2009a [triangle],b [triangle]); Klaus et al. (2009 [triangle]); Chen et al. (2009 [triangle], 2010 [triangle]); Díaz et al. (2007 [triangle]); Yasuda & Tsutsui (2007 [triangle]); Renshaw et al. (2010 [triangle]). For van der Waals radii, see: Bondi (1964 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3057-scheme1.jpg

Experimental

Crystal data

  • C24BBrF12N6
  • M r = 691.02
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3057-efi1.jpg
  • a = 11.1681 (5) Å
  • b = 10.8858 (2) Å
  • c = 19.0664 (7) Å
  • β = 95.2270 (15)°
  • V = 2308.33 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.91 mm−1
  • T = 150 K
  • 0.14 × 0.14 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1995 [triangle]) T min = 0.775, T max = 0.835
  • 15166 measured reflections
  • 5263 independent reflections
  • 3728 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.109
  • S = 1.04
  • 5263 reflections
  • 397 parameters
  • Δρmax = 0.95 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: COLLECT (Nonius, 2002 [triangle]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]) and Mercury (Macrae et al., 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810041863/nc2200sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041863/nc2200Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Natural Sciences and Engin­eering Research Council (NSERC) of Canada for funding this research in the form of a Discovery Grant (TPB), and a Canada Graduate Scholarship (GEM).

supplementary crystallographic information

Comment

Boronsubphthalocyanine (BsubPc), a lower analogue of phthalocyanine, is of interest to researchers in the field of organic electronics (Morse et al., 2010; Mutolo et al. 2006; Gommans et al. 2007; Gommans et al. 2009; Kumar et al. 2009; Ma et al. 2009a; Klaus et al. 2009; Ma et al. 2009b; Chen et al. 2010; Chen et al. 2009; Díaz et al. 2007; Yasuda et al. 2007; and Renshaw et al. 2010). We have synthesized the title compound as it is a precursor to fluorinated phenoxy-BsubPcs (Morse et al. 2010; Paton et al. 2010). The molecular structure of the title compound is shown in Fig. 1. In the crystal structure the molecules are arranged in a concave bowl to ligand motif similar to those of F-F12BsubPc (Rodriguez-Morgade et al. 2008) and Cl-F12BsubPc (Fuduka et al. 2002) whereby the axial halogen atom lies within the concaved face of the BsubPc molecular fragment in close proximately to the boron atom. The net effect is the formation of distinctive columns throughout the crystal structure (Fig. 2). In this arrangment the intermolecular bromine to nitrogen distances are 3.420 (2), 3.466 (2), and 3.427 (2) Å which are close to the sum of the van der Waals radii at 3.40 Å (1.85 Å[Br]+1.55 Å[N]). The distance between Br1 and B1(1 - x, y + 1/2, -z + 1/2) is 3.721 (3) Å which is less the sum of the van der Waals radii at 3.85 Å (1.85 Å[Br]+2.0 Å[B]). The axial boron-bromine bond is oriented towards the inner 5-membered ring of the nieghboring BsubPc unit. This interaction occurs at a distance of 3.471 Å, less than the sum of the van der Waals raddi at 3.55Å (1.85 Å[Br]+1.70 Å[C]). The other two 5-membered rings are seperated from the bromine atom by a distance of 3.572 Å and 3.518 Å, near the sum of the respective van der Waals radii. Neighboring BsubPc units are separated by a B···B distance of 5.471 (5) Å. All van der Waals radii were calculated using the values determined by Bondi (1964).

Experimental

Br-F12BsubPc was synthesized as previously reported (Morse et al. 2010). Single crystals suitable for X-ray diffraction were prepared by slow vapour diffusion of heptane into a solution of Br-F12BsubPc in benzene.

Figures

Fig. 1.
The molecular structure of the title compound with 30% probability ellipsoids.
Fig. 2.
Part of the crystal structure of the title compound.

Crystal data

C24BBrF12N6F(000) = 1336
Mr = 691.02Dx = 1.988 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15166 reflections
a = 11.1681 (5) Åθ = 2.6–27.5°
b = 10.8858 (2) ŵ = 1.91 mm1
c = 19.0664 (7) ÅT = 150 K
β = 95.2270 (15)°Block, purple
V = 2308.33 (14) Å30.14 × 0.14 × 0.10 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer5263 independent reflections
Radiation source: fine-focus sealed tube3728 reflections with I > 2σ(I)
graphiteRint = 0.046
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.6°
[var phi] scans and ω scans with κ offsetsh = −14→14
Absorption correction: multi-scan (SORTAV; Blessing, 1995)k = −12→14
Tmin = 0.775, Tmax = 0.835l = −21→24
15166 measured reflections

Refinement

Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.045Secondary atom site location: difference Fourier map
wR(F2) = 0.109w = 1/[σ2(Fo2) + (0.0553P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5263 reflectionsΔρmax = 0.95 e Å3
397 parametersΔρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.54911 (3)0.40086 (2)0.211746 (16)0.02854 (12)
F10.52166 (15)0.13977 (15)0.52612 (9)0.0308 (4)
F20.31173 (16)0.13286 (16)0.58691 (9)0.0335 (4)
F30.09951 (16)0.16152 (16)0.51060 (10)0.0364 (5)
F40.08838 (15)0.18422 (15)0.36791 (9)0.0302 (4)
F50.05945 (15)0.06664 (17)0.12934 (10)0.0365 (4)
F60.04016 (16)−0.11128 (16)0.02786 (11)0.0411 (5)
F70.23599 (17)−0.19317 (16)−0.02953 (10)0.0401 (5)
F80.45774 (15)−0.11084 (14)0.01579 (9)0.0282 (4)
F90.85617 (15)−0.07367 (15)0.13742 (10)0.0326 (4)
F101.04672 (16)−0.14952 (18)0.22740 (11)0.0444 (5)
F111.06140 (16)−0.08814 (17)0.36440 (11)0.0442 (5)
F120.88979 (15)0.05387 (16)0.41661 (9)0.0352 (4)
N10.4472 (2)0.2141 (2)0.30191 (12)0.0218 (5)
N20.2545 (2)0.1752 (2)0.24173 (12)0.0231 (5)
N30.4328 (2)0.1592 (2)0.18160 (13)0.0217 (5)
N40.5946 (2)0.0451 (2)0.13988 (13)0.0231 (5)
N50.6199 (2)0.1505 (2)0.24953 (12)0.0213 (5)
N60.6238 (2)0.1572 (2)0.37443 (13)0.0239 (6)
C10.5068 (3)0.1882 (2)0.36615 (16)0.0235 (6)
C20.4140 (3)0.1777 (2)0.41463 (15)0.0221 (6)
C30.4175 (3)0.1550 (3)0.48641 (16)0.0243 (7)
C40.3113 (3)0.1491 (3)0.51729 (16)0.0273 (7)
C50.2002 (3)0.1616 (3)0.47737 (17)0.0271 (7)
C60.1951 (3)0.1764 (2)0.40552 (16)0.0244 (7)
C70.3015 (3)0.1865 (2)0.37388 (16)0.0235 (6)
C80.3254 (3)0.1999 (2)0.30061 (16)0.0228 (6)
C90.3109 (3)0.1472 (2)0.18449 (15)0.0220 (6)
C100.2697 (3)0.0688 (3)0.12508 (16)0.0235 (6)
C110.1577 (3)0.0248 (3)0.10206 (16)0.0283 (7)
C120.1472 (3)−0.0642 (3)0.05019 (17)0.0313 (7)
C130.2494 (3)−0.1071 (3)0.02084 (16)0.0278 (7)
C140.3619 (3)−0.0637 (3)0.04319 (15)0.0249 (7)
C150.3744 (3)0.0259 (2)0.09517 (15)0.0226 (6)
C160.4785 (3)0.0802 (2)0.13529 (15)0.0222 (6)
C170.6618 (3)0.0783 (2)0.19883 (16)0.0220 (6)
C180.7745 (3)0.0277 (3)0.23143 (16)0.0247 (7)
C190.8630 (3)−0.0444 (3)0.20584 (17)0.0276 (7)
C200.9576 (3)−0.0830 (3)0.25135 (19)0.0326 (8)
C210.9660 (3)−0.0509 (3)0.32254 (19)0.0324 (8)
C220.8793 (3)0.0217 (3)0.34902 (17)0.0289 (7)
C230.7829 (3)0.0615 (3)0.30424 (16)0.0238 (6)
C240.6767 (3)0.1334 (2)0.31523 (15)0.0217 (6)
B10.5091 (3)0.2236 (3)0.23690 (17)0.0218 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0370 (2)0.02078 (17)0.02777 (19)−0.00196 (12)0.00258 (14)0.00042 (12)
F10.0324 (10)0.0365 (9)0.0229 (10)−0.0030 (8)−0.0018 (8)0.0011 (7)
F20.0411 (11)0.0404 (10)0.0193 (10)−0.0054 (8)0.0048 (8)0.0015 (8)
F30.0329 (11)0.0457 (11)0.0321 (11)0.0009 (8)0.0110 (9)0.0040 (8)
F40.0243 (9)0.0354 (9)0.0303 (11)−0.0009 (7)0.0001 (8)0.0015 (8)
F50.0243 (10)0.0496 (11)0.0353 (12)−0.0035 (8)0.0017 (8)−0.0064 (8)
F60.0304 (11)0.0470 (11)0.0444 (13)−0.0118 (8)−0.0053 (9)−0.0094 (9)
F70.0447 (12)0.0381 (10)0.0365 (12)−0.0062 (9)−0.0024 (9)−0.0156 (8)
F80.0346 (10)0.0264 (9)0.0236 (10)0.0017 (7)0.0036 (8)−0.0040 (7)
F90.0291 (10)0.0351 (10)0.0338 (11)0.0012 (8)0.0037 (8)−0.0094 (8)
F100.0286 (11)0.0462 (11)0.0576 (14)0.0126 (9)−0.0004 (10)−0.0105 (10)
F110.0279 (11)0.0512 (12)0.0510 (14)0.0107 (8)−0.0102 (9)0.0040 (9)
F120.0326 (10)0.0442 (10)0.0273 (11)−0.0021 (8)−0.0053 (8)0.0045 (8)
N10.0225 (13)0.0217 (12)0.0210 (14)0.0004 (10)0.0008 (11)−0.0024 (10)
N20.0247 (13)0.0254 (12)0.0188 (14)0.0037 (10)−0.0004 (11)−0.0002 (10)
N30.0232 (13)0.0215 (12)0.0202 (14)0.0014 (10)0.0006 (10)0.0022 (10)
N40.0248 (14)0.0243 (12)0.0203 (14)−0.0022 (10)0.0023 (11)0.0015 (10)
N50.0246 (13)0.0202 (12)0.0189 (14)−0.0022 (10)0.0012 (11)−0.0009 (10)
N60.0256 (14)0.0233 (12)0.0222 (14)−0.0037 (11)−0.0020 (11)−0.0007 (10)
C10.0260 (16)0.0182 (14)0.0255 (17)−0.0012 (12)−0.0028 (13)−0.0034 (12)
C20.0242 (16)0.0216 (14)0.0199 (16)−0.0020 (12)−0.0012 (13)−0.0027 (11)
C30.0282 (17)0.0226 (15)0.0214 (17)−0.0018 (13)−0.0015 (13)−0.0011 (12)
C40.0376 (19)0.0230 (15)0.0214 (17)−0.0028 (14)0.0037 (14)−0.0005 (12)
C50.0289 (18)0.0252 (16)0.0283 (19)0.0019 (13)0.0099 (14)0.0014 (13)
C60.0230 (16)0.0222 (14)0.0278 (18)−0.0021 (12)0.0016 (13)−0.0003 (12)
C70.0285 (17)0.0196 (14)0.0222 (17)−0.0010 (12)0.0018 (13)−0.0006 (12)
C80.0242 (16)0.0209 (14)0.0233 (17)0.0034 (12)0.0014 (13)−0.0001 (12)
C90.0238 (16)0.0194 (14)0.0219 (17)0.0013 (12)−0.0032 (13)0.0036 (12)
C100.0266 (16)0.0231 (14)0.0203 (16)−0.0016 (13)−0.0008 (13)0.0003 (12)
C110.0257 (17)0.0353 (17)0.0236 (17)−0.0001 (14)0.0013 (14)0.0004 (13)
C120.0256 (17)0.0362 (17)0.0303 (19)−0.0081 (14)−0.0071 (14)0.0009 (14)
C130.0371 (19)0.0246 (15)0.0205 (17)−0.0043 (13)−0.0031 (14)−0.0041 (12)
C140.0323 (18)0.0235 (15)0.0191 (16)0.0017 (13)0.0029 (14)0.0008 (12)
C150.0273 (16)0.0220 (14)0.0181 (16)0.0010 (12)0.0002 (13)0.0045 (11)
C160.0266 (16)0.0218 (14)0.0178 (16)−0.0029 (12)0.0005 (12)0.0016 (11)
C170.0235 (16)0.0219 (14)0.0212 (16)−0.0039 (12)0.0047 (13)0.0008 (12)
C180.0221 (16)0.0219 (14)0.0297 (18)−0.0029 (12)0.0003 (13)0.0009 (12)
C190.0267 (17)0.0234 (15)0.033 (2)−0.0043 (13)0.0036 (14)−0.0020 (13)
C200.0219 (17)0.0312 (17)0.045 (2)0.0007 (14)0.0031 (15)−0.0010 (15)
C210.0225 (17)0.0321 (17)0.040 (2)0.0007 (14)−0.0077 (15)0.0032 (15)
C220.0286 (18)0.0299 (16)0.0277 (19)−0.0057 (14)−0.0012 (14)0.0029 (13)
C230.0212 (16)0.0244 (14)0.0257 (17)−0.0030 (12)0.0023 (13)0.0040 (12)
C240.0237 (16)0.0203 (14)0.0205 (17)−0.0050 (12)−0.0012 (13)0.0004 (12)
B10.0264 (18)0.0197 (16)0.0189 (18)−0.0035 (14)−0.0007 (15)0.0001 (13)

Geometric parameters (Å, °)

Br1—B12.047 (3)N6—C11.345 (4)
F1—C31.339 (3)N6—C241.346 (4)
F2—C41.339 (3)C1—C21.454 (4)
F3—C51.340 (3)C2—C31.388 (4)
F4—C61.336 (3)C2—C71.419 (4)
F5—C111.337 (3)C3—C41.373 (4)
F6—C121.334 (3)C4—C51.402 (4)
F7—C131.340 (3)C5—C61.376 (4)
F8—C141.336 (3)C6—C71.385 (4)
F9—C191.338 (4)C7—C81.454 (4)
F10—C201.344 (4)C9—C101.459 (4)
F11—C211.335 (4)C10—C111.373 (4)
F12—C221.330 (3)C10—C151.425 (4)
N1—C81.366 (4)C11—C121.381 (4)
N1—C11.369 (4)C12—C131.397 (4)
N1—B11.477 (4)C13—C141.373 (4)
N2—C81.341 (4)C14—C151.388 (4)
N2—C91.344 (4)C15—C161.458 (4)
N3—C161.365 (4)C17—C181.460 (4)
N3—C91.373 (4)C18—C191.385 (4)
N3—B11.472 (4)C18—C231.431 (4)
N4—C171.343 (4)C19—C201.371 (4)
N4—C161.347 (4)C20—C211.396 (5)
N5—C171.361 (4)C21—C221.381 (4)
N5—C241.364 (4)C22—C231.382 (4)
N5—B11.472 (4)C23—C241.451 (4)
C8—N1—C1113.3 (2)F6—C12—C11120.9 (3)
C8—N1—B1122.3 (3)F6—C12—C13119.0 (3)
C1—N1—B1122.6 (2)C11—C12—C13120.1 (3)
C8—N2—C9116.1 (2)F7—C13—C14120.1 (3)
C16—N3—C9113.4 (2)F7—C13—C12118.6 (3)
C16—N3—B1122.5 (2)C14—C13—C12121.2 (3)
C9—N3—B1121.9 (2)F8—C14—C13119.3 (3)
C17—N4—C16116.0 (2)F8—C14—C15121.1 (3)
C17—N5—C24114.3 (2)C13—C14—C15119.5 (3)
C17—N5—B1122.3 (2)C14—C15—C10118.9 (3)
C24—N5—B1122.5 (2)C14—C15—C16133.1 (3)
C1—N6—C24116.5 (2)C10—C15—C16107.5 (2)
N6—C1—N1123.0 (3)N4—C16—N3123.5 (3)
N6—C1—C2130.3 (3)N4—C16—C15129.5 (3)
N1—C1—C2105.6 (2)N3—C16—C15105.5 (2)
C3—C2—C7119.7 (3)N4—C17—N5123.2 (3)
C3—C2—C1133.1 (3)N4—C17—C18130.5 (3)
C7—C2—C1107.1 (3)N5—C17—C18104.7 (2)
F1—C3—C4119.4 (3)C19—C18—C23120.1 (3)
F1—C3—C2121.6 (3)C19—C18—C17132.8 (3)
C4—C3—C2118.9 (3)C23—C18—C17107.1 (2)
F2—C4—C3120.4 (3)F9—C19—C20121.0 (3)
F2—C4—C5118.3 (3)F9—C19—C18120.0 (3)
C3—C4—C5121.3 (3)C20—C19—C18119.0 (3)
F3—C5—C6120.7 (3)F10—C20—C19120.2 (3)
F3—C5—C4118.9 (3)F10—C20—C21118.6 (3)
C6—C5—C4120.5 (3)C19—C20—C21121.2 (3)
F4—C6—C5119.8 (3)F11—C21—C22120.2 (3)
F4—C6—C7121.3 (3)F11—C21—C20119.0 (3)
C5—C6—C7118.9 (3)C22—C21—C20120.8 (3)
C6—C7—C2120.6 (3)F12—C22—C21120.1 (3)
C6—C7—C8131.8 (3)F12—C22—C23120.7 (3)
C2—C7—C8107.5 (2)C21—C22—C23119.1 (3)
N2—C8—N1123.3 (3)C22—C23—C18119.8 (3)
N2—C8—C7129.6 (3)C22—C23—C24132.9 (3)
N1—C8—C7105.3 (3)C18—C23—C24107.3 (3)
N2—C9—N3123.4 (3)N6—C24—N5122.7 (3)
N2—C9—C10128.6 (3)N6—C24—C23130.7 (3)
N3—C9—C10105.6 (2)N5—C24—C23105.0 (2)
C11—C10—C15120.9 (3)N3—B1—N5106.4 (2)
C11—C10—C9131.8 (3)N3—B1—N1106.4 (2)
C15—C10—C9106.9 (2)N5—B1—N1106.0 (2)
F5—C11—C10120.9 (3)N3—B1—Br1113.9 (2)
F5—C11—C12119.9 (3)N5—B1—Br1110.5 (2)
C10—C11—C12119.3 (3)N1—B1—Br1113.1 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2200).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Bondi, A. (1964). J. Phys. Chem.68, 441–451.
  • Chen, Y. H., Chang, Y. J., Lee, G. R., Chang, J. H., Wu, I. W., Fang, J. H., Hsu, S. H., Liu, S. W., Wu, C. I. & Pi, T. W. (2010). Org. Electron.11, 445–449.
  • Chen, Y. H., Chang, J. H., Lee, G. R., Wu, I. W., Fang, J. H. & Wu, C. I. (2009). Appl. Phys. Lett.95, 133302.
  • Claessens, C. G., Gonzalez-Rodriguez, D. & Torres, T. (2002). Chem. Rev.102, 835–853. [PubMed]
  • Claessens, C. G. & Torres, T. (2002). Angew. Chem. Int. Ed.41, 2561–2565. [PubMed]
  • Díaz, D. D., Bolink, H. J., Cappelli, L., Claessens, C. G., Coronado, E. & Torres, T. (2007). Tetrahedron Lett.48, 4657–4660.
  • Fuduka, T., Stork, J. R., Potucek, R. J., Olmstead, M. M., Noll, B. C., Kobayashi, N. & Durfee, W. S. (2002). Angew. Chem. Int. Ed.41, 2565–2568. [PubMed]
  • Gommans, H., Aernouts, T., Verreet, B., Heremans, P., Medina, A., Claessens, C. G. & Torres, T. (2009). Adv. Func. Mater.19, 3435–3439.
  • Gommans, H., Cheyns, D., Aernouts, T., Girotto, C., Poortmans, J. & Heremans, P. (2007). Adv. Funct. Mater.17, 2653–2658.
  • Klaus, D., Knecht, R., Dragässer, A., Keil, C. & Schlettwein, D. (2009). Phys. Status Solidi A, 206, 2723–2730.
  • Kumar, H., Kumar, P., Bhardwaj, R., Sharma, G. D., Chand, S., Jain, S. C. & Kumar, V. (2009). J. Phys. D Appl. Phys.42, 015103.
  • Ma, B., Miyamoto, Y., Woo, C. H., Fréchet, J. M. J., Zhang, F. & Liu, Y. (2009b). Proc. SPIE, 7416, 74161E–1.
  • Ma, B., Woo, C. H., Miyamoto, Y. & Frechet, J. M. J. (2009a). Chem. Mater.21, 1413–1417.
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  • Morse, G. E., Helander, M. G., Maka, J. F., Lu, Z. H. & Bender, T. P. (2010). ACS Appl. Mater. Interfaces, 7, 1934–1944.
  • Mutolo, K. L., Mayo, E. I., Rand, B. P., Forrest, S. R. & Thompson, M. E. (2006). J. Am. Chem. Soc.128, 8108–8109. [PubMed]
  • Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A edited by C. W. Carter & R. M. Sweet pp. 307–326. London: Academic Press.
  • Paton, A. S., Morse, G. E., Maka, J. F., Lough, A. J. & Bender, T. P. (2010). Acta Cryst. E66, o3059. [PMC free article] [PubMed]
  • Renshaw, K. C., Xu, X. & Forrest, S. R. (2010). Org. Electron.11, 175–178.
  • Rodriguez-Morgade, M. S., Claessens, C. G., Medina, A., Gonzalez-Rodriguez, D., Gutierrez-Puebla, E., Monge, A., Alkorta, I., Elguero, J. & Torres, T. (2008). Chem. Eur. J.14, 1342–1350. [PubMed]
  • Ros-Lis, J. V., Martinez-Manez, R. & Soto, J. (2005). Chem. Commun. pp. 5260–5262. [PubMed]
  • Sharman, W. M. & van Lier, J. E. (2005). Bioconjug. Chem.16, 1166–1175. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yasuda, T. & Tsutsui, T. (2007). Mol. Cryst. Liq. Cryst.462, 3–9.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography