PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1589.
Published online 2010 November 17. doi:  10.1107/S1600536810046234
PMCID: PMC3011379

trans-Chlorido{3-chloro-2-[(1-naphth­yl)imino­meth­yl]phenyl-κ2 C 1,N}bis­(trimethyl­phosphane)nickel(II)

Abstract

The title compound, [Ni(C17H11ClN)Cl(C3H9P)2], was obtained as a product of the reaction of [Ni(PMe3)4] with a molar equivalent of 2,6-dichloro-N-naphthyl­benzaldehyde­amine in diethyl ether. The τ parameter is 0.3, indicating that the coordination geometry is square-pyramidal. The NiII atom lies in the center of a square pyramidal in which one C, one Cl and two P atoms form the basal plane, with the imine N atom in an apical position. Two P-atom donors are located in trans positions.

Related literature

For related structures of nickel compounds, see: Cao et al. (2008 [triangle]). For the τ parameter, see: Addison et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1589-scheme1.jpg

Experimental

Crystal data

  • [Ni(C17H11ClN)Cl(C3H9P)2]
  • M r = 511.02
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1589-efi1.jpg
  • a = 9.0529 (19) Å
  • b = 15.855 (3) Å
  • c = 17.869 (4) Å
  • V = 2564.7 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.10 mm−1
  • T = 273 K
  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.879, T max = 0.917
  • 9377 measured reflections
  • 3708 independent reflections
  • 3376 reflections with I > 2σ(I)
  • R int = 0.045
  • θmax = 23.5°

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.124
  • S = 1.00
  • 3708 reflections
  • 268 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.24 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1893 Friedel pairs
  • Flack parameter: −0.03 (2)

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046234/bv2163sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046234/bv2163Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Department of Education research project of Shandong Province (J10LB52).

supplementary crystallographic information

Comment

In the title molecule (Fig.1) the nickel atom lies in the center of a square pyramidal geometry (τ parameter is 0.3, Addison et al. 1984) in which C, Cl and two P atoms form the basal plane withthe imine N in the apical position. Two P-donor atoms are located in trans-positions. A five membered metallacycle is formed through the coordination of the N atom of the imine group and the ortho-chelated C atom. The sum of internal bond angles (540%A) of this chelate ring indicates ideal planarity. The bite angle of the chelating ligand [C1—Ni1—N1 = 80.63 (15) %A] is close to that recently reported (Cao et al., 2008). Similar crystal structures been reported in the literature e.g. N–(o-chlorine-phenyl)-2,6-dichlorobenzaldehydeamine-trans-b is(trimethylphosphine)nickel(II) (Cao et al., 2008). The benzene plane forms an angle of 72.3 (1)%A with five membered metallacycle, which is smaller than the title compound (76.2 (1)%A). The bond lengths and angles of this compound are similar to those in the title compound.

Experimental

A sample of Ni(PMe3)4 (1.0 g, 2.75 mmol) in 30 ml of diethyl ether was combined with a solution of N-naphthyl-2,6-dichlorobenzaldehydeamine (0.83 g, 2.75 mmol) in diethyl ether (20 ml) at -80%A. The reaction mixture was warmed to ambient temperature and stirred for 18 h to form a brown-yellow solution. The volatiles were removed in vacuo, and the resulting solid was extracted with pentane (60 ml). Crystallization at 4%A afforded brown-yellow crystals suitable for X-ray diffraction analysis (yield 0.59 g, 42%), Mp: 146%A.

Refinement

All H atoms on C were placed in calculated positions with a C—H bond distance of 0.93 or 0.96 Å and Uiso(H) = 1.2Ueq of the carrier atom.

Figures

Fig. 1.
A view of the structure of (I), showing the atmoic numbering scheme and 30% probability displacement ellipsoids.

Crystal data

[Ni(C17H11ClN)Cl(C3H9P)2]F(000) = 1064
Mr = 511.02Dx = 1.323 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5708 reflections
a = 9.0529 (19) Åθ = 3.5–27.2°
b = 15.855 (3) ŵ = 1.10 mm1
c = 17.869 (4) ÅT = 273 K
V = 2564.7 (9) Å3Block, brown
Z = 40.12 × 0.10 × 0.08 mm

Data collection

Bruker APEXII CCD diffractometer3708 independent reflections
Radiation source: fine-focus sealed tube3376 reflections with I > 2σ(I)
graphiteRint = 0.045
phi and ω scansθmax = 23.5°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −7→9
Tmin = 0.879, Tmax = 0.917k = −16→17
9377 measured reflectionsl = −20→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.124w = 1/[σ2(Fo2) + (0.1P)2 + 0.1P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.077
3708 reflectionsΔρmax = 0.30 e Å3
268 parametersΔρmin = −0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), 1530 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.03 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.24052 (6)0.05187 (3)0.99453 (3)0.03814 (19)
P10.35371 (15)0.15563 (8)1.05246 (8)0.0494 (3)
Cl20.17839 (16)0.13255 (7)0.89625 (6)0.0534 (3)
P20.06670 (16)−0.03809 (9)0.96442 (8)0.0553 (4)
Cl10.6167 (2)−0.17658 (10)1.12882 (9)0.0768 (5)
C10.2869 (5)−0.0146 (3)1.0792 (2)0.0414 (11)
C110.6215 (6)−0.0827 (3)0.7665 (3)0.0499 (12)
C70.5207 (5)−0.0170 (3)0.8785 (2)0.0418 (11)
C60.4108 (5)−0.0671 (3)1.0723 (2)0.0407 (10)
C50.4571 (6)−0.1144 (3)1.1346 (3)0.0531 (13)
C120.5413 (5)−0.0902 (3)0.8345 (2)0.0415 (11)
C130.4820 (6)−0.1712 (3)0.8525 (3)0.0549 (13)
H130.4258−0.17780.89560.066*
C160.6432 (6)−0.1554 (4)0.7219 (3)0.0677 (16)
H160.6961−0.15090.67750.081*
C30.2568 (7)−0.0621 (4)1.2072 (3)0.0676 (15)
H30.2048−0.06111.25200.081*
C80.5727 (6)0.0592 (3)0.8552 (3)0.0540 (12)
H80.55410.10720.88370.065*
C100.6795 (8)−0.0025 (4)0.7460 (3)0.0629 (16)
H100.73540.00270.70250.076*
C90.6544 (6)0.0660 (4)0.7886 (3)0.0636 (15)
H90.69140.11810.77390.076*
C40.3816 (7)−0.1120 (4)1.2009 (3)0.0625 (15)
H40.4139−0.14381.24140.075*
C20.2089 (6)−0.0139 (3)1.1482 (3)0.0549 (13)
H20.12480.01931.15330.066*
C150.5889 (8)−0.2305 (4)0.7425 (3)0.0728 (18)
H150.6066−0.27760.71290.087*
C140.5063 (7)−0.2384 (3)0.8077 (3)0.0656 (17)
H140.4673−0.29070.82070.079*
C170.4894 (5)−0.0668 (3)1.0012 (2)0.0417 (10)
H170.5725−0.10030.99430.050*
N10.4418 (4)−0.0194 (2)0.9485 (2)0.0408 (9)
C200.3896 (9)0.2490 (4)0.9963 (5)0.101 (3)
H20A0.29870.27860.98770.151*
H20B0.43170.23250.94920.151*
H20C0.45740.28521.02230.151*
C220.0628 (10)−0.1413 (4)1.0068 (4)0.100 (3)
H22A0.0305−0.13661.05780.150*
H22B0.1600−0.16551.00550.150*
H22C−0.0043−0.17690.97970.150*
C190.2610 (11)0.2004 (5)1.1325 (5)0.125 (3)
H19A0.26140.16031.17280.188*
H19B0.16080.21381.11940.188*
H19C0.31130.25081.14780.188*
C210.5326 (7)0.1326 (4)1.0908 (5)0.092 (2)
H21A0.57680.18371.10890.139*
H21B0.59420.10861.05260.139*
H21C0.52250.09321.13130.139*
C230.0528 (11)−0.0661 (5)0.8660 (4)0.107 (3)
H23A−0.0202−0.10950.85980.161*
H23B0.1467−0.08640.84860.161*
H23C0.0247−0.01730.83750.161*
C24−0.1127 (8)0.0025 (6)0.9863 (8)0.153 (5)
H24A−0.1864−0.03040.96110.229*
H24B−0.11930.06010.97020.229*
H24C−0.1285−0.00051.03940.229*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0381 (3)0.0439 (3)0.0325 (3)−0.0004 (2)−0.0001 (3)−0.0011 (2)
P10.0460 (8)0.0455 (7)0.0568 (8)0.0043 (5)−0.0126 (6)−0.0108 (6)
Cl20.0715 (9)0.0493 (6)0.0394 (6)0.0043 (6)−0.0041 (6)0.0024 (5)
P20.0516 (8)0.0554 (8)0.0588 (8)−0.0134 (6)−0.0078 (6)0.0076 (6)
Cl10.0980 (12)0.0663 (9)0.0660 (9)0.0286 (8)−0.0186 (8)0.0038 (7)
C10.040 (3)0.052 (3)0.032 (2)−0.006 (2)−0.0020 (18)−0.0021 (19)
C110.048 (3)0.067 (3)0.034 (2)0.011 (2)0.005 (2)−0.001 (2)
C70.038 (3)0.049 (3)0.038 (2)0.006 (2)0.0041 (19)0.008 (2)
C60.047 (3)0.037 (2)0.037 (2)−0.006 (2)0.000 (2)0.0006 (18)
C50.069 (4)0.043 (3)0.047 (3)0.000 (2)−0.010 (3)0.000 (2)
C120.040 (3)0.050 (3)0.035 (2)0.006 (2)0.0009 (19)0.001 (2)
C130.063 (3)0.058 (3)0.044 (3)0.000 (3)0.004 (2)−0.003 (2)
C160.061 (4)0.092 (5)0.050 (3)0.013 (3)0.012 (3)−0.013 (3)
C30.077 (4)0.092 (4)0.034 (3)−0.016 (4)0.007 (3)0.008 (3)
C80.059 (3)0.052 (3)0.051 (3)−0.003 (3)0.009 (2)0.009 (2)
C100.056 (3)0.083 (4)0.050 (3)−0.006 (3)0.014 (2)0.013 (3)
C90.066 (4)0.070 (4)0.055 (3)−0.009 (3)0.006 (3)0.016 (3)
C40.080 (4)0.071 (4)0.037 (3)−0.002 (3)−0.002 (3)0.012 (2)
C20.050 (3)0.076 (3)0.039 (3)−0.001 (3)0.007 (2)−0.004 (2)
C150.091 (5)0.073 (4)0.055 (3)0.015 (4)−0.005 (3)−0.020 (3)
C140.094 (5)0.052 (3)0.051 (3)−0.003 (3)−0.006 (3)−0.006 (2)
C170.038 (2)0.045 (2)0.042 (2)0.0057 (19)0.003 (2)−0.006 (2)
N10.044 (2)0.043 (2)0.0351 (19)0.0075 (17)0.0027 (17)−0.0007 (16)
C200.120 (6)0.060 (4)0.122 (6)−0.024 (4)−0.063 (6)0.014 (4)
C220.155 (7)0.066 (4)0.080 (4)−0.054 (4)−0.041 (5)0.024 (4)
C190.130 (7)0.113 (6)0.134 (7)0.009 (6)0.032 (7)−0.069 (6)
C210.063 (4)0.065 (4)0.149 (7)0.003 (3)−0.045 (4)−0.010 (4)
C230.151 (7)0.094 (5)0.078 (4)−0.054 (5)−0.051 (5)0.005 (4)
C240.042 (4)0.111 (7)0.305 (17)−0.021 (4)0.022 (7)−0.009 (9)

Geometric parameters (Å, °)

Ni1—C11.891 (4)C8—C91.405 (7)
Ni1—P22.1908 (15)C8—H80.9300
Ni1—P12.1973 (14)C10—C91.346 (8)
Ni1—Cl22.2443 (13)C10—H100.9300
Ni1—N12.297 (4)C9—H90.9300
P1—C211.796 (6)C4—H40.9300
P1—C191.803 (7)C2—H20.9300
P1—C201.818 (7)C15—C141.391 (9)
P2—C241.790 (8)C15—H150.9300
P2—C221.804 (6)C14—H140.9300
P2—C231.819 (7)C17—N11.279 (6)
Cl1—C51.752 (6)C17—H170.9300
C1—C61.402 (7)C20—H20A0.9600
C1—C21.420 (7)C20—H20B0.9600
C11—C161.415 (8)C20—H20C0.9600
C11—C101.423 (8)C22—H22A0.9600
C11—C121.421 (6)C22—H22B0.9600
C7—C81.362 (7)C22—H22C0.9600
C7—C121.414 (6)C19—H19A0.9600
C7—N11.441 (6)C19—H19B0.9600
C6—C51.406 (7)C19—H19C0.9600
C6—C171.456 (6)C21—H21A0.9600
C5—C41.368 (8)C21—H21B0.9600
C12—C131.428 (7)C21—H21C0.9600
C13—C141.349 (7)C23—H23A0.9600
C13—H130.9300C23—H23B0.9600
C16—C151.339 (9)C23—H23C0.9600
C16—H160.9300C24—H24A0.9600
C3—C21.372 (8)C24—H24B0.9600
C3—C41.384 (8)C24—H24C0.9600
C3—H30.9300
C1—Ni1—P289.63 (14)C10—C9—H9119.8
C1—Ni1—P186.35 (14)C8—C9—H9119.8
P2—Ni1—P1159.73 (6)C5—C4—C3119.6 (5)
C1—Ni1—Cl2177.94 (15)C5—C4—H4120.2
P2—Ni1—Cl289.94 (5)C3—C4—H4120.2
P1—Ni1—Cl293.37 (5)C3—C2—C1120.3 (5)
C1—Ni1—N180.57 (17)C3—C2—H2119.8
P2—Ni1—N199.30 (11)C1—C2—H2119.8
P1—Ni1—N199.62 (10)C16—C15—C14120.5 (5)
Cl2—Ni1—N1101.48 (10)C16—C15—H15119.7
C21—P1—C19101.4 (5)C14—C15—H15119.7
C21—P1—C20102.4 (4)C13—C14—C15120.8 (6)
C19—P1—C20101.6 (5)C13—C14—H14119.6
C21—P1—Ni1116.6 (2)C15—C14—H14119.6
C19—P1—Ni1116.8 (3)N1—C17—C6118.7 (4)
C20—P1—Ni1115.7 (3)N1—C17—H17120.6
C24—P2—C22102.5 (5)C6—C17—H17120.6
C24—P2—C23103.7 (6)C17—N1—C7119.2 (4)
C22—P2—C23100.5 (3)C17—N1—Ni1107.0 (3)
C24—P2—Ni1111.3 (3)C7—N1—Ni1133.7 (3)
C22—P2—Ni1120.1 (2)P1—C20—H20A109.5
C23—P2—Ni1116.5 (3)P1—C20—H20B109.5
C6—C1—C2118.6 (4)H20A—C20—H20B109.5
C6—C1—Ni1116.0 (3)P1—C20—H20C109.5
C2—C1—Ni1125.4 (4)H20A—C20—H20C109.5
C16—C11—C10122.1 (5)H20B—C20—H20C109.5
C16—C11—C12118.9 (5)P2—C22—H22A109.5
C10—C11—C12119.0 (4)P2—C22—H22B109.5
C8—C7—C12120.9 (4)H22A—C22—H22B109.5
C8—C7—N1117.4 (4)P2—C22—H22C109.5
C12—C7—N1121.7 (4)H22A—C22—H22C109.5
C1—C6—C5119.1 (4)H22B—C22—H22C109.5
C1—C6—C17117.7 (4)P1—C19—H19A109.5
C5—C6—C17123.1 (5)P1—C19—H19B109.5
C4—C5—C6121.4 (5)H19A—C19—H19B109.5
C4—C5—Cl1118.6 (4)P1—C19—H19C109.5
C6—C5—Cl1120.0 (4)H19A—C19—H19C109.5
C7—C12—C13124.3 (4)H19B—C19—H19C109.5
C7—C12—C11118.2 (4)P1—C21—H21A109.5
C13—C12—C11117.4 (4)P1—C21—H21B109.5
C14—C13—C12121.0 (5)H21A—C21—H21B109.5
C14—C13—H13119.5P1—C21—H21C109.5
C12—C13—H13119.5H21A—C21—H21C109.5
C15—C16—C11121.2 (5)H21B—C21—H21C109.5
C15—C16—H16119.4P2—C23—H23A109.5
C11—C16—H16119.4P2—C23—H23B109.5
C2—C3—C4120.9 (5)H23A—C23—H23B109.5
C2—C3—H3119.5P2—C23—H23C109.5
C4—C3—H3119.5H23A—C23—H23C109.5
C7—C8—C9120.5 (5)H23B—C23—H23C109.5
C7—C8—H8119.7P2—C24—H24A109.5
C9—C8—H8119.7P2—C24—H24B109.5
C9—C10—C11120.8 (5)H24A—C24—H24B109.5
C9—C10—H10119.6P2—C24—H24C109.5
C11—C10—H10119.6H24A—C24—H24C109.5
C10—C9—C8120.5 (5)H24B—C24—H24C109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2163).

References

  • Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cao, R., Sun, H. & Li, X. (2008). Organometallics, 27, 1944–1949.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography