PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2914.
Published online 2010 October 23. doi:  10.1107/S1600536810041528
PMCID: PMC3009377

N′-[6-(3,5-Dimethylpyrazol-1-yl)-1,2,4,5-tetrazin-3-yl]propanohydrazide

Abstract

In the title compound, C10H14N8O, the tetra­zine and pyrazole rings form a dihedral angle of 48.81 (2)°. In the crystal, inter­molecular N—H(...)N and N—H(...)O hydrogen bonds link the mol­ecules into layers parallel to (101).

Related literature

For related structures, see: Hu et al. (2004 [triangle]); Xu et al. (2010 [triangle]). For applications of 1,2,4,5-tetra­zine derivatives, see: Sauer (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2914-scheme1.jpg

Experimental

Crystal data

  • C10H14N8O
  • M r = 262.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2914-efi1.jpg
  • a = 10.896 (3) Å
  • b = 8.0354 (18) Å
  • c = 14.805 (3) Å
  • β = 101.243 (3)°
  • V = 1271.3 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 103 K
  • 0.43 × 0.43 × 0.40 mm

Data collection

  • Rigaku AFC10/Saturn724+ diffractometer
  • 11006 measured reflections
  • 2889 independent reflections
  • 2449 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.097
  • S = 1.00
  • 2889 reflections
  • 183 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2008 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810041528/cv2774sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041528/cv2774Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are very grateful to the Science Foundation for Excellent Youth Scholars of the Department of Education of Zhejiang Province and the Educational Commission of Zhejiang Province of China (grant No. Y201018289).

supplementary crystallographic information

Comment

1,2,4,5-Tetrazine derivatives have high potential for biological activity, possessing a wide spectrum of antiviral and antitumor properties. They have been widely used in pesticides and herbicides (Sauer,1996). In continuation of our study of the structure-activity relationships of 1,2,4,5-tetrazine derivatives (Hu et al., 2004; Xu et al., 2010), we present here the crystal structure of the title compound (I).

In (I) (Fig. 1), the essentially planar tetrazine ring forms a dihedral angle of 48.81 (2)° with the pyrazole ring. The N14/N15/C16/O17 and C16/C18/C19 planes form dihedral angles of 79.07 (2)° and 53.51 (2)°, respectively, with the tetrazine ring. In the crystal structure, intermolecular N—H···N and N—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to the plane (101) (Fig. 2).

Experimental

3,6-Di(3,5-dimethyl-1H-pyrazol-1-yl)-1,2,4,5-tetrazine (3.0 mmol), chloroform (10 ml) and pyridine(0.25 ml,3.1 mmol) were mixed. Propionyl chloride(3.0 mmol) in chloroform (10 ml) was added dropwise with stirring at room temperature. After the starting 1,2,4,5-tetrazine was completely consumed (the reaction courses was monitored by TLC, ethyl acetate system), evaporation of the chloroform, crude product was obtained and purified by preparative thin-layer chromatography over silica gel GF254(2 mm) (dichloromethane: petroleum ether=1:1). The solution of the compound in anhydrous ethanol was concentrated gradually at room temperature to afford single crystals, which was suitable for X-ray diffraction.

Refinement

C-bound H atoms were placed in calculated positions with C—H = 0.93 (aromatic) and 0.96 Å (methyl), and refined as riding, with Uiso(H) = 1.2Ueq(C). Amino H atoms were located on a difference map and isotropically refined.

Figures

Fig. 1.
The structure of (I), shown with 30% probability displacement ellipsoids.
Fig. 2.
A portion of the crystal packing of (I), viewed down the b axis (N—H···O and N—H···N hydrogen bonds shown as dashed lines).

Crystal data

C10H14N8OF(000) = 552
Mr = 262.29Dx = 1.370 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3481 reflections
a = 10.896 (3) Åθ = 3.1–27.5°
b = 8.0354 (18) ŵ = 0.10 mm1
c = 14.805 (3) ÅT = 103 K
β = 101.243 (3)°Block, red
V = 1271.3 (5) Å30.43 × 0.43 × 0.40 mm
Z = 4

Data collection

Rigaku AFC10/Saturn724+ diffractometer2449 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.026
graphiteθmax = 27.5°, θmin = 3.2°
Detector resolution: 28.5714 pixels mm-1h = −14→14
phi and ω scansk = −10→9
11006 measured reflectionsl = −19→15
2889 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0536P)2 + 0.356P] where P = (Fo2 + 2Fc2)/3
2889 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O170.65146 (8)0.86367 (11)0.70314 (6)0.0179 (2)
N10.36485 (9)0.55187 (13)0.58619 (7)0.0181 (2)
N20.48288 (9)0.59455 (13)0.59073 (7)0.0178 (2)
N40.54093 (9)0.41800 (13)0.72319 (7)0.0178 (2)
N50.42231 (9)0.37460 (13)0.71646 (7)0.0180 (2)
N70.21537 (9)0.38630 (13)0.63454 (7)0.0153 (2)
N80.15710 (9)0.34258 (13)0.54720 (7)0.0162 (2)
N140.69045 (9)0.54690 (13)0.65843 (7)0.0150 (2)
N150.72507 (9)0.68179 (12)0.61051 (7)0.0143 (2)
C30.56793 (11)0.51973 (14)0.65674 (8)0.0141 (2)
C60.34064 (11)0.43941 (15)0.64680 (8)0.0144 (2)
C90.04184 (11)0.30101 (15)0.55470 (9)0.0160 (3)
C100.02513 (11)0.31991 (16)0.64640 (9)0.0182 (3)
H10−0.04910.29860.66910.022*
C110.13712 (11)0.37494 (15)0.69613 (8)0.0162 (3)
C120.17476 (12)0.42513 (18)0.79463 (9)0.0225 (3)
H12A0.10100.42540.82340.027*
H12B0.21140.53690.79830.027*
H12C0.23660.34610.82690.027*
C13−0.04989 (11)0.24561 (17)0.47157 (9)0.0202 (3)
H13A−0.01680.27050.41610.024*
H13B−0.12930.30450.46890.024*
H13C−0.06370.12550.47520.024*
C160.70060 (10)0.83713 (14)0.63648 (8)0.0138 (2)
C180.73811 (12)0.97462 (16)0.57793 (9)0.0204 (3)
H18A0.82781.00080.59990.024*
H18B0.72750.93540.51350.024*
C190.66242 (18)1.13003 (19)0.58044 (13)0.0396 (4)
H19A0.57441.10710.55390.048*
H19B0.69361.21750.54470.048*
H19C0.66981.16690.64440.048*
H14N0.7449 (16)0.507 (2)0.7030 (12)0.032 (5)*
H15N0.7596 (16)0.663 (2)0.5615 (12)0.032 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O170.0174 (4)0.0197 (5)0.0189 (4)−0.0030 (3)0.0092 (3)−0.0036 (4)
N10.0153 (5)0.0192 (5)0.0195 (5)−0.0025 (4)0.0025 (4)0.0026 (4)
N20.0153 (5)0.0183 (5)0.0196 (5)−0.0022 (4)0.0025 (4)0.0032 (4)
N40.0142 (5)0.0190 (5)0.0207 (5)−0.0005 (4)0.0045 (4)0.0042 (4)
N50.0161 (5)0.0184 (5)0.0203 (5)−0.0011 (4)0.0057 (4)0.0033 (4)
N70.0141 (5)0.0190 (5)0.0133 (5)−0.0019 (4)0.0040 (4)−0.0007 (4)
N80.0158 (5)0.0187 (5)0.0147 (5)−0.0018 (4)0.0042 (4)−0.0018 (4)
N140.0139 (5)0.0135 (5)0.0177 (5)−0.0003 (4)0.0034 (4)0.0048 (4)
N150.0170 (5)0.0132 (5)0.0146 (5)−0.0019 (4)0.0077 (4)0.0014 (4)
C30.0164 (5)0.0115 (5)0.0151 (6)−0.0001 (4)0.0051 (4)−0.0015 (4)
C60.0138 (5)0.0148 (6)0.0156 (6)−0.0012 (4)0.0050 (4)−0.0013 (4)
C90.0143 (5)0.0151 (6)0.0194 (6)−0.0003 (4)0.0054 (5)0.0012 (5)
C100.0162 (5)0.0200 (6)0.0202 (6)−0.0010 (5)0.0077 (5)0.0011 (5)
C110.0172 (6)0.0158 (6)0.0177 (6)0.0010 (4)0.0084 (5)0.0024 (5)
C120.0227 (6)0.0285 (7)0.0178 (6)−0.0022 (5)0.0075 (5)−0.0005 (5)
C130.0171 (6)0.0221 (6)0.0217 (6)−0.0034 (5)0.0042 (5)−0.0009 (5)
C160.0105 (5)0.0148 (6)0.0160 (6)−0.0013 (4)0.0026 (4)0.0000 (4)
C180.0224 (6)0.0167 (6)0.0241 (7)−0.0016 (5)0.0096 (5)0.0034 (5)
C190.0561 (10)0.0238 (8)0.0457 (10)0.0138 (7)0.0269 (8)0.0154 (7)

Geometric parameters (Å, °)

O17—C161.2297 (15)C9—C131.4940 (17)
N1—N21.3200 (14)C10—C111.3698 (17)
N1—C61.3355 (16)C10—H100.9500
N2—C31.3499 (16)C11—C121.4914 (18)
N4—N51.3235 (14)C12—H12A0.9800
N4—C31.3547 (16)C12—H12B0.9800
N5—C61.3300 (16)C12—H12C0.9800
N7—C111.3675 (15)C13—H13A0.9800
N7—N81.3705 (14)C13—H13B0.9800
N7—C61.4076 (15)C13—H13C0.9800
N8—C91.3249 (15)C16—C181.5091 (17)
N14—C31.3480 (15)C18—C191.501 (2)
N14—N151.3874 (14)C18—H18A0.9900
N14—H14N0.860 (18)C18—H18B0.9900
N15—C161.3480 (16)C19—H19A0.9800
N15—H15N0.893 (19)C19—H19B0.9800
C9—C101.4128 (17)C19—H19C0.9800
N2—N1—C6117.36 (10)C10—C11—C12131.24 (11)
N1—N2—C3116.47 (10)C11—C12—H12A109.5
N5—N4—C3116.84 (10)C11—C12—H12B109.5
N4—N5—C6116.81 (10)H12A—C12—H12B109.5
C11—N7—N8112.19 (10)C11—C12—H12C109.5
C11—N7—C6130.48 (10)H12A—C12—H12C109.5
N8—N7—C6117.30 (9)H12B—C12—H12C109.5
C9—N8—N7104.95 (10)C9—C13—H13A109.5
C3—N14—N15118.95 (10)C9—C13—H13B109.5
C3—N14—H14N119.1 (12)H13A—C13—H13B109.5
N15—N14—H14N118.1 (12)C9—C13—H13C109.5
C16—N15—N14119.27 (10)H13A—C13—H13C109.5
C16—N15—H15N122.0 (11)H13B—C13—H13C109.5
N14—N15—H15N118.7 (11)O17—C16—N15122.06 (11)
N14—C3—N2118.61 (11)O17—C16—C18122.90 (11)
N14—C3—N4116.02 (10)N15—C16—C18115.04 (11)
N2—C3—N4125.37 (11)C19—C18—C16112.53 (11)
N5—C6—N1126.59 (11)C19—C18—H18A109.1
N5—C6—N7117.82 (11)C16—C18—H18A109.1
N1—C6—N7115.60 (10)C19—C18—H18B109.1
N8—C9—C10110.81 (11)C16—C18—H18B109.1
N8—C9—C13119.93 (11)H18A—C18—H18B107.8
C10—C9—C13129.25 (11)C18—C19—H19A109.5
C11—C10—C9106.44 (11)C18—C19—H19B109.5
C11—C10—H10126.8H19A—C19—H19B109.5
C9—C10—H10126.8C18—C19—H19C109.5
N7—C11—C10105.61 (11)H19A—C19—H19C109.5
N7—C11—C12123.07 (11)H19B—C19—H19C109.5
C6—N1—N2—C3−0.04 (16)C11—N7—C6—N1−130.25 (13)
C3—N4—N5—C6−2.11 (16)N8—N7—C6—N147.37 (15)
C11—N7—N8—C9−0.96 (13)N7—N8—C9—C100.78 (13)
C6—N7—N8—C9−179.01 (10)N7—N8—C9—C13−179.96 (10)
C3—N14—N15—C1664.25 (15)N8—C9—C10—C11−0.34 (14)
N15—N14—C3—N217.35 (16)C13—C9—C10—C11−179.53 (12)
N15—N14—C3—N4−162.40 (10)N8—N7—C11—C100.75 (13)
N1—N2—C3—N14173.64 (10)C6—N7—C11—C10178.47 (12)
N1—N2—C3—N4−6.63 (18)N8—N7—C11—C12−176.21 (11)
N5—N4—C3—N14−172.47 (10)C6—N7—C11—C121.5 (2)
N5—N4—C3—N27.79 (18)C9—C10—C11—N7−0.25 (13)
N4—N5—C6—N1−4.45 (19)C9—C10—C11—C12176.37 (13)
N4—N5—C6—N7175.75 (10)N14—N15—C16—O172.05 (17)
N2—N1—C6—N55.63 (19)N14—N15—C16—C18−178.04 (10)
N2—N1—C6—N7−174.57 (10)O17—C16—C18—C19−25.57 (18)
C11—N7—C6—N549.57 (18)N15—C16—C18—C19154.53 (13)
N8—N7—C6—N5−132.81 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N14—H14N···O17i0.859 (17)1.980 (17)2.821 (2)166 (2)
N15—H15N···N8ii0.893 (18)1.996 (18)2.882 (2)171 (2)

Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2774).

References

  • Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett.14, 1177–1181. [PubMed]
  • Rigaku/MSC (2008). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901–955. Oxford: Elsevier.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Xu, F., Yang, Z. Z., Hu, W. X. & Xi, L. M. (2010). Chin. J. Org. Chem.30, 260–265.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography