PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2726–o2727.
Published online 2010 October 9. doi:  10.1107/S1600536810039243
PMCID: PMC3009375

2-Cyano­quinolin-1-ium nitrate

Abstract

A proton is transferred from the nitric acid to the N atom of 2-cyano­quinoline during crystallization, resulting in the formation of the title salt, C10H7N2 +·NO3 . The quinolinium ring system is approximately planar, with a maximum deviation of 0.013 (3) Å. In the crystal, a very asymmetric bifurcated N—H(...)(O,O) hydrogen bond to two O atoms of an adjacent nitrate anion occurs, generating an R 2 1(4) ring motif. C—H(...)O hydrogen bonds link the ions into sheets stacking along the a axis.

Related literature

For background to and the biological activities of quinoline derivatives, see: Loh, Quah et al. (2010a [triangle],b [triangle]); Loh et al. (2010 [triangle]); Sasaki et al. (1998 [triangle]); Reux et al. (2009 [triangle]); Morimoto et al. (1991 [triangle]); Michael (1997 [triangle]); Markees et al. (1970 [triangle]); Campbell et al. (1988 [triangle]). For the hydrogen-bond motif, see: Bernstein et al. (1995 [triangle]). For related structures, see: Loh, Quah et al. (2010a [triangle],b [triangle]); Loh et al. (2010 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2726-scheme1.jpg

Experimental

Crystal data

  • C10H7N2 +·NO3
  • M r = 217.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2726-efi2.jpg
  • a = 3.6969 (1) Å
  • b = 17.7031 (3) Å
  • c = 14.6029 (2) Å
  • β = 95.802 (1)°
  • V = 950.81 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 100 K
  • 0.44 × 0.18 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.951, T max = 0.992
  • 16184 measured reflections
  • 2758 independent reflections
  • 2103 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.122
  • S = 1.05
  • 2758 reflections
  • 170 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810039243/hb5669sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039243/hb5669Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (grant No. 1001/PFIZIK/811160). WSL thanks USM for the award of a USM fellowship. MH thanks USM for the award of a postdoctoral fellowship.

supplementary crystallographic information

Comment

Recently, hydrogen-bonding patterns involving quinoline and its derivatives with organic acid have been investigated (Loh at al., 2010a,b; Loh et al., 2010). Syntheses of the quinoline derivatives were discussed earlier (Sasaki et al., 1998; Reux et al., 2009). Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Heterocyclic molecules containing cyano group are useful as drug intermediates. Herein we report the synthesis of 2-cyanoquinolin-1-ium nitrate.

The asymmetric unit of the title compound (Fig. 1) consists of one 2-cyanoquinolin-1-ium cation (C1–C10/N1/N2) and one nitrate anion (N3/O1–O3). One proton is transferred from the hydroxyl group of nitrate to the atom N1 of 2-cyanoquinoline during the crystallization, resulting in the formation of salt. The quinoline ring system (C1–C9/N1) is approximately planar with a maximum deviation of 0.013 (3) Å at atom C6. The R21(4) ring motif (Fig. 1; Bernstein et al., 1995) indicates a bifurcated hydrogen bond from N1–H1N1 to the two acceptors (O1/O3). Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structures (Loh et al., 2010a,b; Loh et al., 2010).

In the crystal packing (Fig. 2), intermolecular N1—H1N1···O1, N1—H1N1···O3, C5—H5A···O3, C7—H7A···O2 and C8—H8A···O2 hydrogen bonds (Table 1) link the molecules into two-dimensional planes stacking along the a axis.

Experimental

A few drops of nitric acid were added to a hot methanol solution (20 ml) of quinoline-2-carbonitrile (39 mg, Aldrich) which had been warmed over a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Colourless plates of (I) appeared after a few days.

Refinement

All H atoms were located from a difference Fourier map. H1N1 was fixed at its found position with bond length of N—H being 0.9481 Å. The remaining H atoms were refined freely with the bond lengths of C—H being 0.943 (17) to 0.998 (17) Å.

Figures

Fig. 1.
The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. The R21(4) ring motif which indicates the bifurcated hydrogen bond is shown.
Fig. 2.
The crystal structure of the title compound, viewed along the a axis.

Crystal data

C10H7N2+·NO3F(000) = 448
Mr = 217.19Dx = 1.517 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3861 reflections
a = 3.6969 (1) Åθ = 2.7–31.0°
b = 17.7031 (3) ŵ = 0.12 mm1
c = 14.6029 (2) ÅT = 100 K
β = 95.802 (1)°Plate, colourless
V = 950.81 (3) Å30.44 × 0.18 × 0.07 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer2758 independent reflections
Radiation source: fine-focus sealed tube2103 reflections with I > 2σ(I)
graphiteRint = 0.041
[var phi] and ω scansθmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −5→5
Tmin = 0.951, Tmax = 0.992k = −24→24
16184 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0614P)2 + 0.2227P] where P = (Fo2 + 2Fc2)/3
2758 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.1851 (3)0.21342 (6)0.92466 (7)0.0314 (3)
O20.4106 (3)0.10064 (5)0.91484 (7)0.0255 (3)
O30.4296 (3)0.17922 (5)0.80150 (6)0.0258 (3)
N10.2524 (3)0.30942 (6)0.73844 (7)0.0144 (2)
H1N10.32410.26300.76720.079 (8)*
N2−0.1335 (4)0.17939 (7)0.58610 (8)0.0265 (3)
N30.3373 (3)0.16413 (6)0.88321 (7)0.0196 (3)
C10.3582 (3)0.37566 (7)0.78076 (8)0.0142 (3)
C20.5593 (4)0.37429 (7)0.86850 (8)0.0161 (3)
C30.6627 (4)0.44133 (7)0.90990 (9)0.0176 (3)
C40.5697 (4)0.51140 (7)0.86660 (9)0.0181 (3)
C50.3739 (4)0.51378 (7)0.78226 (9)0.0175 (3)
C60.2637 (3)0.44559 (7)0.73637 (8)0.0148 (3)
C70.0675 (4)0.44419 (7)0.64838 (9)0.0176 (3)
C8−0.0316 (4)0.37627 (7)0.60703 (9)0.0175 (3)
C90.0658 (4)0.30972 (7)0.65509 (8)0.0158 (3)
C10−0.0406 (4)0.23670 (7)0.61661 (9)0.0184 (3)
H2A0.619 (4)0.3267 (9)0.8975 (11)0.020 (4)*
H3A0.805 (5)0.4406 (9)0.9717 (12)0.023 (4)*
H4A0.649 (5)0.5595 (10)0.8975 (11)0.028 (4)*
H5A0.304 (5)0.5598 (9)0.7531 (11)0.024 (4)*
H7A0.002 (4)0.4918 (9)0.6174 (11)0.020 (4)*
H8A−0.166 (5)0.3735 (10)0.5461 (13)0.030 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0486 (7)0.0188 (5)0.0295 (6)0.0018 (5)0.0167 (5)−0.0018 (4)
O20.0375 (6)0.0142 (5)0.0234 (5)−0.0007 (4)−0.0040 (4)0.0047 (4)
O30.0438 (7)0.0173 (5)0.0170 (5)0.0075 (4)0.0072 (4)0.0026 (4)
N10.0169 (6)0.0120 (5)0.0142 (5)0.0006 (4)0.0010 (4)0.0000 (4)
N20.0331 (7)0.0217 (6)0.0237 (6)−0.0029 (5)−0.0020 (5)−0.0014 (5)
N30.0255 (6)0.0153 (5)0.0172 (5)−0.0027 (4)−0.0015 (4)−0.0003 (4)
C10.0146 (6)0.0126 (6)0.0159 (6)0.0002 (4)0.0035 (5)−0.0005 (4)
C20.0180 (6)0.0145 (6)0.0156 (6)0.0004 (5)0.0013 (5)0.0005 (4)
C30.0164 (6)0.0187 (6)0.0177 (6)−0.0017 (5)0.0020 (5)−0.0024 (5)
C40.0180 (7)0.0151 (6)0.0216 (6)−0.0035 (5)0.0044 (5)−0.0037 (5)
C50.0200 (7)0.0128 (6)0.0204 (6)0.0002 (5)0.0053 (5)0.0002 (5)
C60.0146 (6)0.0140 (6)0.0160 (6)0.0009 (4)0.0027 (5)0.0008 (4)
C70.0185 (7)0.0166 (6)0.0177 (6)0.0030 (5)0.0023 (5)0.0023 (5)
C80.0179 (6)0.0192 (6)0.0153 (6)0.0016 (5)0.0008 (5)0.0009 (5)
C90.0157 (6)0.0159 (6)0.0158 (6)−0.0003 (5)0.0017 (5)−0.0016 (4)
C100.0190 (7)0.0192 (6)0.0166 (6)0.0004 (5)0.0003 (5)0.0005 (5)

Geometric parameters (Å, °)

O1—N31.2301 (15)C3—H3A0.998 (17)
O2—N31.2347 (14)C4—C51.3646 (19)
O3—N31.3015 (14)C4—H4A0.993 (18)
N1—C91.3370 (16)C5—C61.4203 (17)
N1—C11.3642 (15)C5—H5A0.943 (17)
N1—H1N10.9481C6—C71.4104 (18)
N2—C101.1466 (18)C7—C81.3784 (18)
C1—C21.4152 (17)C7—H7A0.976 (17)
C1—C61.4243 (16)C8—C91.3998 (18)
C2—C31.3686 (18)C8—H8A0.977 (18)
C2—H2A0.959 (16)C9—C101.4480 (18)
C3—C41.4188 (18)
C9—N1—C1120.45 (10)C3—C4—H4A119.9 (10)
C9—N1—H1N1120.2C4—C5—C6120.01 (12)
C1—N1—H1N1119.3C4—C5—H5A122.1 (10)
O1—N3—O2123.76 (12)C6—C5—H5A117.9 (10)
O1—N3—O3118.74 (11)C7—C6—C5122.77 (11)
O2—N3—O3117.50 (11)C7—C6—C1118.63 (11)
N1—C1—C2119.72 (11)C5—C6—C1118.60 (12)
N1—C1—C6119.68 (11)C8—C7—C6120.25 (12)
C2—C1—C6120.60 (11)C8—C7—H7A120.5 (10)
C3—C2—C1118.87 (12)C6—C7—H7A119.2 (10)
C3—C2—H2A121.7 (10)C7—C8—C9118.10 (12)
C1—C2—H2A119.4 (10)C7—C8—H8A122.1 (10)
C2—C3—C4121.13 (12)C9—C8—H8A119.8 (10)
C2—C3—H3A119.1 (9)N1—C9—C8122.87 (11)
C4—C3—H3A119.8 (9)N1—C9—C10116.40 (11)
C5—C4—C3120.79 (12)C8—C9—C10120.72 (12)
C5—C4—H4A119.3 (10)N2—C10—C9178.33 (15)
C9—N1—C1—C2−179.23 (11)C2—C1—C6—C7179.11 (11)
C9—N1—C1—C61.04 (18)N1—C1—C6—C5179.37 (11)
N1—C1—C2—C3−179.94 (12)C2—C1—C6—C5−0.36 (18)
C6—C1—C2—C3−0.21 (19)C5—C6—C7—C8179.86 (12)
C1—C2—C3—C40.39 (19)C1—C6—C7—C80.40 (19)
C2—C3—C4—C50.0 (2)C6—C7—C8—C90.44 (19)
C3—C4—C5—C6−0.6 (2)C1—N1—C9—C8−0.16 (19)
C4—C5—C6—C7−178.69 (12)C1—N1—C9—C10−178.81 (11)
C4—C5—C6—C10.76 (19)C7—C8—C9—N1−0.6 (2)
N1—C1—C6—C7−1.15 (18)C7—C8—C9—C10177.99 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.952.563.2376 (15)128
N1—H1N1···O30.951.602.5432 (14)172
C5—H5A···O3i0.943 (16)2.497 (16)3.2835 (16)141.0 (15)
C7—H7A···O2ii0.976 (16)2.473 (16)3.3641 (16)151.8 (12)
C8—H8A···O2iii0.977 (18)2.391 (19)3.3355 (17)162.4 (15)

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x, y+1/2, −z+3/2; (iii) x−1, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5669).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem.31, 1031–1035. [PubMed]
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Loh, W.-S., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2709. [PMC free article] [PubMed]
  • Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2357. [PMC free article] [PubMed]
  • Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2396. [PMC free article] [PubMed]
  • Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem.13, 324–326. [PubMed]
  • Michael, J. P. (1997). Nat. Prod. Rep.14, 605–608.
  • Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.
  • Reux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem.17, 4441–4447. [PubMed]
  • Sasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 3851–3856.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography