PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2742–o2743.
Published online 2010 October 9. doi:  10.1107/S160053681003919X
PMCID: PMC3009369

6-(2-Chloro­benz­yl)-1-(4-chloro­phen­yl)-7-hy­droxy-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-5-one

Abstract

The title compound, C19H15Cl2N3O2, was obtained by a one-step cyclo­condensation of 2-amino-1-(4-chloro­phen­yl)imidazoline with diethyl (2-chloro­benz­yl)malonate under basic conditions. In the crystalline state, the mol­ecule exists as the 7-hy­droxy-5-oxo tautomer. The dihedral angles between the fused imidazopyrimidine and aromatic chloro­phenyl and chloro­benzyl rings are 14.2 (1) and 70.7 (1)°, respectively. The conformation of the mol­ecule is influenced by the intra­molecular C—H(...)O and C—H(...)N hydrogen bonds, giving a nearly planar five-ring fused system [maximum deviation from the mean plane = 0.296 (2) Å]. In the crystal structure, strong inter­molecular O—H(...)O hydrogen bonds link the mol­ecules into chains along the c axis. These chains are further stabilized by weak C—H(...)Cl and π–π inter­actions [centroid–centroid distance = 3.6707 (12) Å].

Related literature

For background to dioxo derivatives of fused imidazoline ring systems, their biological activity and medical applications, see: Matosiuk, Fidecka, Antkiewicz-Michaluk, Dybała et al. (2002) [triangle]; Matosiuk, Fidecka, Antkiewicz-Michaluk, Lipkowski et al. (2002 [triangle]). For the synthesis, see: Rządkowska et al. (2004 [triangle]). For a related structure, see: Wysocki et al. (2006 [triangle]). For structure inter­pretation tools, see: Allen et al. (1995 [triangle]); Allen (2002 [triangle]); Bruno et al. (2002 [triangle]). For resonance-assisted hydrogen bonds, see: Gilli et al. (1989 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2742-scheme1.jpg

Experimental

Crystal data

  • C19H15Cl2N3O2
  • M r = 388.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2742-efi1.jpg
  • a = 11.4521 (3) Å
  • b = 12.8287 (4) Å
  • c = 11.7255 (3) Å
  • β = 96.283 (2)°
  • V = 1712.31 (8) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 3.58 mm−1
  • T = 296 K
  • 0.26 × 0.25 × 0.11 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.415, T max = 0.674
  • 12489 measured reflections
  • 3040 independent reflections
  • 2521 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.112
  • S = 1.05
  • 3040 reflections
  • 280 parameters
  • All H-atom parameters refined
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681003919X/fj2343sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003919X/fj2343Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Dioxo derivatives of fused imidazoline ring systems were found to have significant analgesic, opioid-like action but without typical narcotic analgesic side effects (Matosiuk, Fidecka, Antkiewicz-Michaluk, Dybała et al.., 2002; Matosiuk, Fidecka, Antkiewicz-Michaluk, Lipkowski et al., 2002). The X-ray analysis of the title compound, (I), was performed in order to confirm the synthesis pathway and identification of its tautomeric form in the solid state. The bond lengths, angles and planarity of the rings in the bicyclic imidazopyrimidine part of (I) are very similar to those observed in previously reported crystal structure of 6-(benzyl)-7-hydroxy-1-(2-methoxyphenyl)-2,3-dihydro-1H7H- imidazo[1,2-a]-pyrimidin-5-one (Wysocki et al. (2006). In the crystalline state, the molecule exists as 7-hydroxy-5-oxo tautomer, as evidenced by the C7—O10 [1.330 (2) Å], C9—O11 [1.242 (2) Å], C7—N6 [1.361 (2) Å], C2—N6 [1.305 (2) Å], C9—N3 [1.391 (2) Å] C2—N3 [1.358 (2) Å] bond lengths and the position of the H atom in the vicinity of O10 in difference electron-density map. The dihedral angles between the fused imidazopyrimidine and aromatic chlopophenyl and chlobobenzyl rings are 14.2 (1) and 70.7 (1)°, respectively. This conformation is influenced by the intramolecular C12—H122···O10 and C26—H261···N6 hydrogen bonds giving nearly co-planar five-ring fused system. In the crystal structure, strong intermolecular O10—H101···O11 resonance-assisted hydrogen bond (Gilli et al., 1989) links the molecules related by c-glide plane into chains along the c axis. Additionaly, molecules are joined in molecular chains parallel to [101] direction by a C33—H331···Cl27 hydrogen bond. Moreover, the guanidine π-electron system and phenyl ring, belonging to inversion-related molecules overlap with the shortest intermolecular contact C2···C23iii of 3.270 (3) and the angle between overlapping planes of 13.33 (11)° characteristic for π-π interactions [(iii) = 1 - x, 1 - y, 1 - z].

Experimental

The title compound, C19H15Cl2N3O2 (I), was obtained by one-step cyclocondensation of 1-(4-chlorophenyl)-2-aminoimidazoline-2 with diethyl (2-chlorobenzyl)malonate under basic (sodium methoxide) conditions (Rządkowska et al., 2004). Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a propan-2-ol solution.

Refinement

All H atoms were located in difference Fourier maps and refined freely with Uiso(H) values of 1.5Ueq(N,C, O).

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
A view of the molecular packing in (I). Dashed lines indicate O—H···O hydrogen bonds and weak C—H···Cl intermolecular interactions.

Crystal data

C19H15Cl2N3O2F(000) = 800
Mr = 388.24Dx = 1.506 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 3410 reflections
a = 11.4521 (3) Åθ = 3.9–66.7°
b = 12.8287 (4) ŵ = 3.58 mm1
c = 11.7255 (3) ÅT = 296 K
β = 96.283 (2)°Block, colourless
V = 1712.31 (8) Å30.26 × 0.25 × 0.11 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer3040 independent reflections
Radiation source: fine-focus sealed tube2521 reflections with I > 2σ(I)
graphiteRint = 0.042
[var phi] and ω scansθmax = 67.8°, θmin = 3.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −13→12
Tmin = 0.415, Tmax = 0.674k = −15→8
12489 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.112All H-atom parameters refined
S = 1.05w = 1/[σ2(Fo2) + (0.0566P)2 + 0.4965P] where P = (Fo2 + 2Fc2)/3
3040 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric.Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=dPlane 1 m1 = -0.57842(0.00033) m2 = -0.67971(0.00033) m3 = -0.45102(0.00053) D = -11.68389(0.00244) Atom d s d/s (d/s)**2 N1 * -0.0460 0.0016 - 28.384 805.647 C2 * 0.0029 0.0018 1.594 2.541 N3 * 0.0198 0.0015 13.215 174.625 C4 * -0.0357 0.0023 - 15.771 248.720 C5 * 0.0819 0.0023 36.135 1305.707 N6 * 0.0038 0.0015 2.558 6.543 C7 * 0.0139 0.0017 7.983 63.731 C8 * 0.0007 0.0018 0.384 0.147 C9 * -0.0243 0.0018 - 13.656 186.495 ============ Sum((d/s)**2) for starred atoms 2794.157 Chi-squared at 95% for 6 degrees of freedom: 12.60 The group of atoms deviates significantly from planarityPlane 2 m1 = -0.71141(0.00065) m2 = -0.48107(0.00093) m3 = -0.51231(0.00073) D = -11.40891(0.00306) Atom d s d/s (d/s)**2 C21 * 0.0042 0.0018 2.264 5.124 C22 * -0.0048 0.0022 - 2.159 4.661 C23 * -0.0012 0.0023 - 0.496 0.246 C24 * 0.0051 0.0021 2.408 5.797 C25 * -0.0050 0.0024 - 2.037 4.149 C26 * -0.0018 0.0023 - 0.782 0.611 ============ Sum((d/s)**2) for starred atoms 20.589 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarityPlane 3 m1 = -0.47124(0.00082) m2 = 0.42681(0.00103) m3 = -0.77186(0.00062) D = -3.90575(0.01406) Atom d s d/s (d/s)**2 C31 * -0.0026 0.0019 - 1.391 1.935 C32 * 0.0016 0.0021 0.757 0.573 C33 * 0.0031 0.0027 1.149 1.321 C34 * -0.0079 0.0031 - 2.556 6.533 C35 * 0.0042 0.0031 1.328 1.764 C36 * 0.0021 0.0024 0.859 0.738 ============ Sum((d/s)**2) for starred atoms 12.865 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarityDihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 14.18 (0.06) 165.82 (0.06) 1 3 70.69 (0.06) 109.31 (0.06) 2 3 58.31 (0.06) 121.69 (0.06)
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.54690 (14)0.58844 (13)0.65922 (13)0.0405 (4)
C20.45149 (16)0.63750 (14)0.69364 (15)0.0345 (4)
N30.42905 (13)0.59910 (12)0.79699 (12)0.0368 (4)
C40.5131 (2)0.51928 (18)0.84006 (18)0.0470 (5)
H410.560 (2)0.547 (2)0.910 (2)0.070*
H420.473 (2)0.454 (2)0.860 (2)0.070*
C50.5851 (2)0.50339 (18)0.73916 (18)0.0472 (5)
H510.670 (3)0.511 (2)0.762 (2)0.071*
H520.567 (2)0.430 (2)0.703 (2)0.071*
N60.39106 (13)0.71171 (12)0.63876 (12)0.0362 (4)
C70.30136 (15)0.75057 (14)0.69309 (14)0.0329 (4)
C80.27243 (16)0.71925 (14)0.79896 (15)0.0349 (4)
C90.34131 (16)0.63956 (14)0.85735 (14)0.0346 (4)
O100.24079 (12)0.82712 (10)0.63775 (11)0.0402 (3)
H1010.268 (2)0.844 (2)0.576 (2)0.060*
O110.33241 (12)0.60419 (10)0.95466 (10)0.0423 (3)
C120.17750 (17)0.77055 (15)0.85764 (17)0.0390 (4)
H1210.213 (2)0.7977 (18)0.933 (2)0.059*
H1220.150 (2)0.832 (2)0.814 (2)0.059*
C210.59787 (16)0.60289 (15)0.55615 (15)0.0384 (4)
C220.67539 (19)0.52838 (18)0.52397 (19)0.0500 (5)
H2210.691 (2)0.465 (2)0.568 (2)0.075*
C230.7284 (2)0.53957 (19)0.4242 (2)0.0534 (6)
H2310.777 (3)0.490 (2)0.404 (2)0.080*
C240.70459 (18)0.62511 (18)0.35695 (18)0.0499 (5)
C250.6293 (2)0.7008 (2)0.3878 (2)0.0568 (6)
H2510.617 (3)0.764 (2)0.342 (2)0.085*
C260.5754 (2)0.69008 (19)0.48719 (19)0.0511 (5)
H2610.529 (2)0.742 (2)0.507 (2)0.077*
Cl270.77155 (6)0.63967 (6)0.23211 (5)0.0784 (2)
C310.07284 (16)0.70368 (15)0.87807 (16)0.0389 (4)
C32−0.00662 (18)0.73742 (19)0.95069 (17)0.0489 (5)
C33−0.1022 (2)0.6786 (3)0.9736 (2)0.0669 (7)
H331−0.152 (3)0.706 (3)1.024 (3)0.100*
C34−0.1203 (2)0.5828 (3)0.9241 (3)0.0747 (8)
H341−0.183 (3)0.540 (3)0.942 (3)0.112*
C35−0.0442 (2)0.5470 (2)0.8503 (3)0.0742 (8)
H351−0.054 (3)0.479 (3)0.814 (3)0.111*
C360.0516 (2)0.60699 (18)0.8281 (2)0.0541 (5)
H3610.103 (3)0.581 (2)0.779 (2)0.081*
Cl370.01144 (6)0.85933 (6)1.01526 (7)0.0825 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0425 (8)0.0461 (9)0.0342 (8)0.0134 (7)0.0110 (7)0.0067 (7)
C20.0374 (9)0.0386 (9)0.0281 (8)0.0033 (8)0.0064 (7)0.0001 (7)
N30.0419 (8)0.0412 (8)0.0283 (7)0.0055 (7)0.0082 (6)0.0041 (6)
C40.0524 (12)0.0506 (12)0.0387 (10)0.0142 (10)0.0088 (9)0.0098 (10)
C50.0523 (12)0.0496 (12)0.0405 (11)0.0157 (10)0.0089 (9)0.0103 (9)
N60.0395 (8)0.0411 (8)0.0296 (7)0.0070 (7)0.0107 (6)0.0026 (6)
C70.0364 (9)0.0338 (9)0.0293 (8)0.0012 (7)0.0071 (7)0.0003 (7)
C80.0391 (9)0.0364 (9)0.0305 (9)0.0004 (8)0.0100 (7)0.0008 (8)
C90.0397 (9)0.0368 (9)0.0284 (9)−0.0036 (8)0.0082 (7)−0.0026 (7)
O100.0456 (7)0.0434 (7)0.0335 (7)0.0109 (6)0.0129 (6)0.0068 (6)
O110.0570 (8)0.0452 (7)0.0265 (6)0.0006 (6)0.0127 (6)0.0035 (6)
C120.0436 (10)0.0387 (10)0.0370 (10)0.0016 (8)0.0145 (8)−0.0005 (9)
C210.0363 (9)0.0467 (10)0.0334 (9)0.0055 (8)0.0092 (7)−0.0008 (8)
C220.0525 (12)0.0496 (12)0.0506 (12)0.0134 (10)0.0173 (10)0.0013 (10)
C230.0525 (12)0.0555 (13)0.0557 (13)0.0110 (11)0.0212 (10)−0.0078 (11)
C240.0458 (11)0.0655 (14)0.0408 (11)0.0029 (10)0.0162 (9)−0.0037 (10)
C250.0606 (14)0.0656 (14)0.0476 (12)0.0159 (12)0.0211 (10)0.0134 (11)
C260.0538 (12)0.0584 (13)0.0447 (11)0.0178 (11)0.0210 (9)0.0086 (10)
Cl270.0858 (5)0.1015 (5)0.0555 (4)0.0106 (4)0.0425 (3)0.0026 (3)
C310.0380 (9)0.0458 (10)0.0335 (9)0.0007 (8)0.0067 (7)0.0036 (8)
C320.0413 (10)0.0673 (14)0.0395 (10)0.0036 (10)0.0105 (8)0.0005 (10)
C330.0432 (12)0.104 (2)0.0555 (14)−0.0044 (13)0.0165 (10)0.0133 (15)
C340.0489 (13)0.092 (2)0.0832 (19)−0.0194 (14)0.0082 (13)0.0247 (17)
C350.0642 (16)0.0622 (15)0.094 (2)−0.0200 (13)−0.0012 (15)−0.0006 (15)
C360.0501 (12)0.0532 (13)0.0597 (14)−0.0049 (10)0.0091 (10)−0.0086 (11)
Cl370.0628 (4)0.0959 (5)0.0929 (5)0.0075 (3)0.0269 (3)−0.0442 (4)

Geometric parameters (Å, °)

N1—C21.360 (2)C21—C221.385 (3)
N1—C211.411 (2)C21—C261.388 (3)
N1—C51.473 (2)C22—C231.383 (3)
C2—N61.305 (2)C22—H2210.97 (3)
C2—N31.358 (2)C23—C241.362 (3)
N3—C91.391 (2)C23—H2310.90 (3)
N3—C41.458 (2)C24—C251.373 (3)
C4—C51.528 (3)C24—Cl271.735 (2)
C4—H410.99 (3)C25—C261.384 (3)
C4—H420.99 (3)C25—H2510.97 (3)
C5—H510.99 (3)C26—H2610.90 (3)
C5—H521.04 (3)C31—C361.382 (3)
N6—C71.361 (2)C31—C321.382 (3)
C7—O101.330 (2)C32—C331.381 (3)
C7—C81.379 (2)C32—Cl371.740 (2)
C8—C91.421 (3)C33—C341.364 (4)
C8—C121.501 (2)C33—H3310.93 (3)
C9—O111.242 (2)C34—C351.374 (4)
O10—H1010.85 (3)C34—H3410.95 (4)
C12—C311.514 (3)C35—C361.388 (3)
C12—H1211.00 (3)C35—H3510.97 (4)
C12—H1220.97 (3)C36—H3610.93 (3)
C2—N1—C21127.93 (15)H121—C12—H122105.4 (19)
C2—N1—C5110.25 (15)C22—C21—C26118.77 (18)
C21—N1—C5121.37 (15)C22—C21—N1118.71 (18)
N6—C2—N3124.25 (16)C26—C21—N1122.50 (17)
N6—C2—N1126.25 (16)C23—C22—C21120.8 (2)
N3—C2—N1109.48 (15)C23—C22—H221117.5 (16)
C2—N3—C9122.42 (15)C21—C22—H221121.6 (16)
C2—N3—C4112.43 (15)C24—C23—C22119.7 (2)
C9—N3—C4124.92 (15)C24—C23—H231120.6 (19)
N3—C4—C5102.55 (15)C22—C23—H231119.7 (19)
N3—C4—H41108.5 (15)C23—C24—C25120.6 (2)
C5—C4—H41113.2 (15)C23—C24—Cl27119.78 (17)
N3—C4—H42111.4 (15)C25—C24—Cl27119.62 (18)
C5—C4—H42112.2 (15)C24—C25—C26120.2 (2)
H41—C4—H42109 (2)C24—C25—H251120.1 (17)
N1—C5—C4104.26 (16)C26—C25—H251119.6 (17)
N1—C5—H51108.7 (16)C25—C26—C21120.0 (2)
C4—C5—H51112.1 (16)C25—C26—H261118.3 (18)
N1—C5—H52111.8 (14)C21—C26—H261121.7 (18)
C4—C5—H52109.6 (14)C36—C31—C32116.41 (19)
H51—C5—H52110 (2)C36—C31—C12123.18 (17)
C2—N6—C7115.03 (15)C32—C31—C12120.40 (18)
O10—C7—N6114.97 (15)C33—C32—C31122.6 (2)
O10—C7—C8119.37 (16)C33—C32—Cl37117.77 (19)
N6—C7—C8125.63 (16)C31—C32—Cl37119.65 (16)
C7—C8—C9117.90 (16)C34—C33—C32119.8 (2)
C7—C8—C12122.85 (17)C34—C33—H331122 (2)
C9—C8—C12119.12 (15)C32—C33—H331118 (2)
O11—C9—N3117.86 (16)C33—C34—C35119.5 (2)
O11—C9—C8127.47 (16)C33—C34—H341121 (2)
N3—C9—C8114.66 (15)C35—C34—H341120 (2)
C7—O10—H101113.1 (17)C34—C35—C36120.1 (3)
C8—C12—C31116.73 (16)C34—C35—H351122 (2)
C8—C12—H121108.5 (14)C36—C35—H351118 (2)
C31—C12—H121107.9 (14)C31—C36—C35121.7 (2)
C8—C12—H122109.0 (14)C31—C36—H361119.5 (19)
C31—C12—H122108.6 (14)C35—C36—H361118.8 (19)
C21—N1—C2—N6−3.2 (3)C7—C8—C12—C31116.6 (2)
C5—N1—C2—N6−175.39 (19)C9—C8—C12—C31−67.8 (2)
C21—N1—C2—N3178.28 (17)C2—N1—C21—C22−164.0 (2)
C5—N1—C2—N36.0 (2)C5—N1—C21—C227.5 (3)
N6—C2—N3—C9−3.1 (3)C2—N1—C21—C2617.6 (3)
N1—C2—N3—C9175.46 (16)C5—N1—C21—C26−171.0 (2)
N6—C2—N3—C4−177.88 (19)C26—C21—C22—C23−0.9 (3)
N1—C2—N3—C40.7 (2)N1—C21—C22—C23−179.4 (2)
C2—N3—C4—C5−6.7 (2)C21—C22—C23—C240.3 (4)
C9—N3—C4—C5178.73 (18)C22—C23—C24—C250.6 (4)
C2—N1—C5—C4−9.9 (2)C22—C23—C24—Cl27179.68 (18)
C21—N1—C5—C4177.28 (18)C23—C24—C25—C26−0.9 (4)
N3—C4—C5—N19.5 (2)Cl27—C24—C25—C26180.0 (2)
N3—C2—N6—C70.4 (3)C24—C25—C26—C210.4 (4)
N1—C2—N6—C7−177.92 (18)C22—C21—C26—C250.6 (3)
C2—N6—C7—O10179.17 (15)N1—C21—C26—C25179.0 (2)
C2—N6—C7—C81.1 (3)C8—C12—C31—C36−12.0 (3)
O10—C7—C8—C9−178.03 (16)C8—C12—C31—C32167.16 (18)
N6—C7—C8—C9−0.1 (3)C36—C31—C32—C330.3 (3)
O10—C7—C8—C12−2.3 (3)C12—C31—C32—C33−178.9 (2)
N6—C7—C8—C12175.65 (17)C36—C31—C32—Cl37−178.73 (17)
C2—N3—C9—O11−175.20 (17)C12—C31—C32—Cl372.1 (3)
C4—N3—C9—O11−1.1 (3)C31—C32—C33—C340.4 (4)
C2—N3—C9—C83.9 (2)Cl37—C32—C33—C34179.5 (2)
C4—N3—C9—C8178.01 (19)C32—C33—C34—C35−1.2 (4)
C7—C8—C9—O11176.67 (18)C33—C34—C35—C361.2 (4)
C12—C8—C9—O110.8 (3)C32—C31—C36—C35−0.3 (3)
C7—C8—C9—N3−2.4 (2)C12—C31—C36—C35178.9 (2)
C12—C8—C9—N3−178.25 (16)C34—C35—C36—C31−0.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C12—H122···O100.97 (2)2.41 (2)2.848 (2)106.5 (17)
C26—H261···N60.90 (2)2.36 (2)2.918 (3)120.3 (19)
O10—H101···O11i0.85 (2)1.80 (2)2.6418 (18)172 (3)
C33—H331···Cl27ii0.93 (4)2.81 (4)3.534 (2)135 (3)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x−1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2343).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C, pp. 685–706. Dordrecht: Kluwer Academic Publishers.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc.111, 1023–1028.
  • Matosiuk, D., Fidecka, S., Antkiewicz-Michaluk, L., Dybała, I. & Kozioł, A. E. (2002). Eur. J. Med. Chem.37, 845–853. [PubMed]
  • Matosiuk, D., Fidecka, S., Antkiewicz-Michaluk, L., Lipkowski, J., Dybała, I. & Kozioł, A. E. (2002). Eur. J. Med. Chem.37, 761–772. [PubMed]
  • Rządkowska, M., Szacoń, E., Fidecka, S., Kędzierska, E. & Matosiuk, D. (2004). PL Patent Appl. No. 366 270.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wysocki, W., Matosiuk, D., Karczmarzyk, Z., Rządkowska, M. & Urbańczyk-Lipkowska, Z. (2006). Acta Cryst. E62, o2548–o2550.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography