PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1436.
Published online 2010 October 23. doi:  10.1107/S1600536810041784
PMCID: PMC3009363

Poly[[[μ3-N′-(carboxymethyl)ethylene­di­amine-N,N,N′-triacetato]dysprosium(III)] trihydrate]

Abstract

In the title coordination polymer, {[Dy(C10H13N2O8)]·3H2O}n, the dysprosium(III) ion is coordinated by two N atoms and six O atoms from three different (carb­oxy­meth­yl)ethyl­ene­diamine­triacetate ligands in a distorted square-anti­prismatic geometry. The ligands connect the metal atoms, forming layers parallel to the ab plane. O—H(...)O hydrogen bonds further assemble adjacent layers into a three-dimensional supra­molecular network.

Related literature

For general background to the topologies and potential applications of metal coordination polymers, see: Benelli & Gatteschi (2002 [triangle]). For related structures, see: Wang et al. (2007 [triangle]); You & Ng (2007 [triangle]); Sakagami et al. (1999 [triangle]); Templeton et al. (1985 [triangle]); Vikram & Sivasankar (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1436-scheme1.jpg

Experimental

Crystal data

  • [Dy(C10H13N2O8)]·3H2O
  • M r = 505.77
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1436-efi1.jpg
  • a = 13.3835 (5) Å
  • b = 13.0127 (4) Å
  • c = 18.6943 (7) Å
  • V = 3255.7 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 4.65 mm−1
  • T = 296 K
  • 0.25 × 0.19 × 0.18 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.389, T max = 0.488
  • 19825 measured reflections
  • 3192 independent reflections
  • 2230 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.061
  • S = 1.07
  • 3192 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.74 e Å−3
  • Δρmin = −0.69 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810041784/rz2501sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041784/rz2501Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Zhongshan Polytechnic for supporting this work.

supplementary crystallographic information

Comment

The design and construction of metal coordination polymers based on metal ions and multifunctional bridging ligands is of great research interest due to their intriguing topologies and potential applications as functional materials (Benelli & Gatteschi, 2002). The flexible ethylenediaminetetraacetato ligand possessing variable coordination modes to bind to metal ions, provides unique opportunities for the construction of unusual networks. Recently, some mono- and polynuclear Dy complexes of this ligand have been reported (Wang et al., 2007; You & Ng, 2007; Sakagami et al., 1999; Templeton et al., 1985; Vikram & Sivasankar, 2008). Herein, we report the structure of the new polynuclear dysprosium complex, {[Dy(C10H9N2O8)].3H2O}n.

In the structure of the title compound, the dysprosium(III) metal displays a distorted square antiprism geometry provided by two N atoms from one (carboxymethyl)ethylenediaminetriacetato ligand (HEDTA) and six O atoms from three different HEDTA ligands (Fig. 1). The ligands connect the dysprosium centres to form layers parallel to the ab plane. O—H···O hydrogen bonds involving the interstitial water molecules assemble adjacent layers to construct a three-dimensional supramolecular network (Table 1; Fig. 2).

Experimental

A mixture of Dy2O3 (0.189 g, 0.5 mmol), ethylenediaminetetraacetic acid (0.146 g, 0.5 mmol), and H2O (10 mL) was sealed in a 20 mL Teflon-lined reactor, which was heated in an oven to 423 K for 36 h and then cooled to room temperature at a rate of 5 K h-1. Colourless crystals were obtained in a yield of 46% based on Dy.

Refinement

All water H atoms were tentatively located in difference density Fourier maps and were refined with O–H distance restraints of 0.85 (2) Å and with Uiso(H) = 1.5 Ueq(O). In the last stage of refinement, they were treated as riding on their parent O atoms. All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.97 Å, and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (ii) 1/2-x, -1/2+y, z; (iii) 1/2+x, y, 1/2-z.
Fig. 2.
Crystal packing of the title compound viewed along the b axis. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

[Dy(C10H13N2O8)]·3H2OF(000) = 1976
Mr = 505.77Dx = 2.064 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4800 reflections
a = 13.3835 (5) Åθ = 1.4–28.0°
b = 13.0127 (4) ŵ = 4.65 mm1
c = 18.6943 (7) ÅT = 296 K
V = 3255.7 (2) Å3Block, colourless
Z = 80.25 × 0.19 × 0.18 mm

Data collection

Bruker APEXII area-detector diffractometer3192 independent reflections
Radiation source: fine-focus sealed tube2230 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scanθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008)h = −13→16
Tmin = 0.389, Tmax = 0.488k = −16→16
19825 measured reflectionsl = −22→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0239P)2 + 3.1993P] where P = (Fo2 + 2Fc2)/3
3192 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = −0.69 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Dy10.195820 (13)0.546220 (11)0.248589 (10)0.01538 (8)
N10.1266 (2)0.6990 (2)0.32682 (16)0.0170 (7)
N20.0619 (2)0.6517 (2)0.17784 (16)0.0167 (7)
C40.1889 (3)0.5806 (3)0.4196 (2)0.0220 (10)
C30.1109 (3)0.6609 (3)0.4002 (2)0.0219 (9)
H3A0.04480.63100.40400.026*
H3B0.11490.71780.43350.026*
C20.1622 (3)0.5832 (3)0.0792 (2)0.0245 (10)
C10.0980 (3)0.6704 (3)0.1040 (2)0.0231 (10)
H1A0.13620.73370.10270.028*
H1B0.04140.67790.07210.028*
C60.0396 (3)0.7507 (3)0.2145 (2)0.0187 (9)
H6A−0.02290.77780.19640.022*
H6B0.09180.79980.20330.022*
C50.0323 (3)0.7387 (3)0.2951 (2)0.0195 (9)
H5A0.01660.80480.31630.023*
H5B−0.02170.69180.30640.023*
O20.1990 (2)0.5221 (2)0.12204 (15)0.0305 (8)
O40.2355 (2)0.5364 (2)0.36996 (14)0.0258 (7)
O30.2014 (2)0.5610 (2)0.48468 (15)0.0375 (8)
O10.1763 (3)0.5794 (3)0.01143 (16)0.0444 (9)
H10.21180.53000.00180.067*
C80.2652 (3)0.7845 (3)0.2596 (2)0.0187 (9)
C70.2041 (3)0.7799 (3)0.3277 (2)0.0204 (9)
H7A0.24870.76770.36770.024*
H7B0.17220.84590.33520.024*
O50.2750 (2)0.70278 (19)0.22414 (15)0.0228 (6)
C10−0.0465 (3)0.5264 (3)0.2434 (2)0.0180 (9)
C9−0.0296 (3)0.5873 (3)0.1748 (2)0.0219 (9)
H9A−0.02430.53990.13490.026*
H9B−0.08700.63120.16630.026*
O60.03078 (19)0.4997 (2)0.27769 (15)0.0218 (6)
O70.30708 (18)0.86679 (19)0.24311 (14)0.0243 (7)
O8−0.13277 (19)0.50137 (19)0.26058 (14)0.0216 (6)
O1W0.9746 (4)0.4386 (3)0.4225 (2)0.0840 (14)
H2W0.96680.44750.37800.126*
H1W0.92000.44780.44410.126*
O2W0.8853 (3)0.7777 (3)0.0541 (2)0.0798 (13)
H3W0.86060.77690.01330.096*
H4W0.90630.83640.06490.096*
O3W0.3282 (4)0.7889 (3)0.0831 (2)0.0966 (16)
H6W0.28140.83190.09090.145*
H5W0.38330.82470.07850.145*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Dy10.01199 (11)0.01112 (10)0.02303 (12)0.00043 (6)0.00005 (9)−0.00001 (9)
N10.0157 (17)0.0155 (15)0.0197 (18)0.0009 (14)−0.0011 (14)0.0026 (14)
N20.0193 (18)0.0153 (16)0.0156 (17)0.0010 (14)0.0044 (14)0.0002 (14)
C40.023 (2)0.020 (2)0.022 (2)0.0000 (18)−0.0041 (19)0.0008 (18)
C30.025 (2)0.025 (2)0.016 (2)−0.0007 (19)0.0048 (18)−0.0006 (18)
C20.024 (2)0.029 (2)0.020 (2)0.002 (2)0.005 (2)−0.0044 (19)
C10.024 (2)0.023 (2)0.022 (2)0.0052 (19)0.0024 (18)0.0024 (18)
C60.015 (2)0.0148 (19)0.027 (2)0.0073 (17)−0.0028 (18)0.0023 (17)
C50.017 (2)0.0167 (19)0.025 (2)0.0043 (17)0.0026 (18)−0.0020 (17)
O20.042 (2)0.0291 (16)0.0204 (16)0.0182 (14)0.0014 (14)−0.0032 (13)
O40.0253 (17)0.0287 (16)0.0233 (16)0.0092 (14)−0.0022 (14)0.0028 (13)
O30.046 (2)0.048 (2)0.0180 (16)0.0207 (16)−0.0026 (14)0.0043 (15)
O10.059 (2)0.048 (2)0.0260 (18)0.0262 (18)0.0108 (16)0.0033 (16)
C80.0086 (18)0.0125 (18)0.035 (3)0.0022 (15)−0.0059 (18)0.0031 (18)
C70.023 (2)0.0147 (19)0.023 (2)−0.0004 (17)−0.0021 (18)−0.0029 (17)
O50.0212 (15)0.0139 (14)0.0332 (16)−0.0004 (12)0.0088 (13)−0.0013 (12)
C100.017 (2)0.0103 (16)0.026 (2)0.0009 (15)−0.0007 (19)−0.0050 (17)
C90.017 (2)0.025 (2)0.023 (2)−0.0019 (18)−0.0044 (18)0.0021 (18)
O60.0114 (14)0.0188 (13)0.0352 (16)0.0000 (12)−0.0021 (13)0.0088 (13)
O70.0177 (15)0.0116 (12)0.0437 (18)−0.0019 (11)0.0034 (14)0.0005 (14)
O80.0077 (14)0.0187 (12)0.0383 (18)−0.0011 (11)0.0011 (12)0.0039 (13)
O1W0.109 (4)0.097 (3)0.046 (3)−0.014 (3)0.024 (3)0.002 (2)
O2W0.062 (3)0.113 (4)0.064 (3)0.018 (3)−0.004 (2)0.017 (3)
O3W0.127 (5)0.084 (3)0.079 (3)0.007 (3)0.011 (3)−0.003 (3)

Geometric parameters (Å, °)

Dy1—O42.334 (3)C6—C51.518 (6)
Dy1—O7i2.337 (3)C6—H6A0.9700
Dy1—O52.342 (3)C6—H6B0.9700
Dy1—O62.354 (3)C5—H5A0.9700
Dy1—O8ii2.373 (3)C5—H5B0.9700
Dy1—O22.387 (3)O1—H10.8200
Dy1—N22.617 (3)C8—O71.248 (4)
Dy1—N12.636 (3)C8—O51.260 (4)
N1—C31.473 (4)C8—C71.513 (5)
N1—C71.477 (5)C7—H7A0.9700
N1—C51.487 (5)C7—H7B0.9700
N2—C11.482 (5)C10—O81.243 (4)
N2—C91.485 (5)C10—O61.265 (4)
N2—C61.488 (5)C10—C91.524 (5)
C4—O41.257 (5)C9—H9A0.9700
C4—O31.254 (5)C9—H9B0.9700
C4—C31.521 (5)O7—Dy1iii2.337 (3)
C3—H3A0.9700O8—Dy1iv2.373 (2)
C3—H3B0.9700O1W—H2W0.8462
C2—O21.231 (5)O1W—H1W0.8429
C2—O11.282 (5)O2W—H3W0.8322
C2—C11.496 (5)O2W—H4W0.8371
C1—H1A0.9700O3W—H6W0.8515
C1—H1B0.9700O3W—H5W0.8763
O4—Dy1—O7i89.53 (9)O2—C2—O1124.0 (4)
O4—Dy1—O597.72 (10)O2—C2—C1121.2 (4)
O7i—Dy1—O5150.23 (9)O1—C2—C1114.8 (4)
O4—Dy1—O688.56 (10)N2—C1—C2110.6 (3)
O7i—Dy1—O674.80 (9)N2—C1—H1A109.5
O5—Dy1—O6133.90 (9)C2—C1—H1A109.5
O4—Dy1—O8ii80.61 (10)N2—C1—H1B109.5
O7i—Dy1—O8ii76.54 (8)C2—C1—H1B109.5
O5—Dy1—O8ii76.25 (9)H1A—C1—H1B108.1
O6—Dy1—O8ii149.38 (9)N2—C6—C5112.4 (3)
O4—Dy1—O2162.25 (10)N2—C6—H6A109.1
O7i—Dy1—O279.94 (10)C5—C6—H6A109.1
O5—Dy1—O285.01 (10)N2—C6—H6B109.1
O6—Dy1—O2102.22 (10)C5—C6—H6B109.1
O8ii—Dy1—O283.05 (9)H6A—C6—H6B107.9
O4—Dy1—N2132.53 (9)N1—C5—C6112.1 (3)
O7i—Dy1—N2119.38 (9)N1—C5—H5A109.2
O5—Dy1—N275.81 (10)C6—C5—H5A109.2
O6—Dy1—N266.98 (9)N1—C5—H5B109.2
O8ii—Dy1—N2138.99 (9)C6—C5—H5B109.2
O2—Dy1—N265.17 (9)H5A—C5—H5B107.9
O4—Dy1—N165.28 (9)C2—O2—Dy1123.5 (3)
O7i—Dy1—N1140.53 (9)C4—O4—Dy1125.5 (3)
O5—Dy1—N167.10 (9)C2—O1—H1109.5
O6—Dy1—N174.70 (10)O7—C8—O5123.1 (4)
O8ii—Dy1—N1124.40 (9)O7—C8—C7119.0 (3)
O2—Dy1—N1130.94 (9)O5—C8—C7117.8 (3)
N2—Dy1—N169.15 (9)N1—C7—C8113.4 (3)
C3—N1—C7109.2 (3)N1—C7—H7A108.9
C3—N1—C5111.5 (3)C8—C7—H7A108.9
C7—N1—C5110.7 (3)N1—C7—H7B108.9
C3—N1—Dy1108.2 (2)C8—C7—H7B108.9
C7—N1—Dy1107.3 (2)H7A—C7—H7B107.7
C5—N1—Dy1109.8 (2)C8—O5—Dy1125.7 (2)
C1—N2—C9109.0 (3)O8—C10—O6123.8 (4)
C1—N2—C6110.6 (3)O8—C10—C9119.4 (3)
C9—N2—C6109.9 (3)O6—C10—C9116.7 (3)
C1—N2—Dy1109.4 (2)N2—C9—C10112.5 (3)
C9—N2—Dy1106.7 (2)N2—C9—H9A109.1
C6—N2—Dy1111.0 (2)C10—C9—H9A109.1
O4—C4—O3123.9 (4)N2—C9—H9B109.1
O4—C4—C3118.5 (4)C10—C9—H9B109.1
O3—C4—C3117.6 (4)H9A—C9—H9B107.8
N1—C3—C4110.9 (3)C10—O6—Dy1125.4 (2)
N1—C3—H3A109.5C8—O7—Dy1iii147.0 (2)
C4—C3—H3A109.5C10—O8—Dy1iv144.6 (2)
N1—C3—H3B109.5H2W—O1W—H1W110.2
C4—C3—H3B109.5H3W—O2W—H4W111.4
H3A—C3—H3B108.1H6W—O3W—H5W106.7

Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) x+1/2, y, −z+1/2; (iii) −x+1/2, y+1/2, z; (iv) x−1/2, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O3v0.821.692.504 (5)172
O1W—H2W···O6vi0.852.172.920 (5)148
O1W—H1W···O3vii0.842.102.925 (5)165
O2W—H3W···O3Wviii0.832.042.813 (6)154
O2W—H4W···O1Wix0.842.092.844 (6)150
O3W—H6W···O2iii0.852.563.141 (5)127

Symmetry codes: (v) −x+1/2, −y+1, z−1/2; (vi) x+1, y, z; (vii) −x+1, −y+1, −z+1; (viii) x+1/2, −y+3/2, −z; (ix) −x+2, y+1/2, −z+1/2; (iii) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2501).

References

  • Benelli, C. & Gatteschi, D. (2002). Chem. Rev.102, 2369-2388. [PubMed]
  • Bruker (2004). APEX2, SAINT andSADABS Bruker AXS Inc, Madison, Wisconsin, USA.
  • Sakagami, N., Yamada, Y., Konno, T. & Okamoto, K. (1999). Inorg. Chim. Acta, 288, 7–16.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Templeton, L. K., Templeton, D. H. & Zalkin, A. (1985). Acta Cryst. C41, 355–358.
  • Vikram, L. & Sivasankar, B. N. (2008). Ind. J. Chem. Sect. A, 47, 25–31.
  • Wang, J., Gao, G., Zhang, Z., Zhang, X. & Wang, Y. (2007). J. Coord. Chem.60, 2221–2241.
  • You, X.-L. & Ng, S. W. (2007). Acta Cryst. E63, m1819.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography