PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2929–o2930.
Published online 2010 October 23. doi:  10.1107/S1600536810041449
PMCID: PMC3009356

9-(2,6-Dimethyl­phen­oxy­carbon­yl)-10-methyl­acridinium trifluoro­methane­sulfonate

Abstract

In the crystal structure of the title compound, C23H20NO2 +·CF3SO3 , adjacent cations are linked through a network of C—H(...)π and π–π inter­actions, and neighboring cations and anions via C—H(...)O inter­actions. The acridine and benzene ring systems are oriented at a dihedral angle of 31.4 (1)°. The carboxyl group is twisted at an angle of 66.3 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel in the crystal structure.

Related literature

For general background to the chemiluminogenic properties of 9-phen­oxy­carbonyl-10-methyl­acridinium trifluoro­meth­ane­sulfonates, see: Brown et al. (2009 [triangle]); Natrajan et al. (2010 [triangle]). For related structures, see: Krzymiński et al. (2009 [triangle]); Niziołek et al. (2009 [triangle]). For inter­molecular inter­actions, see: Dorn et al. (2005 [triangle]); Hunter et al. (2001 [triangle]); Novoa et al. (2006 [triangle]); Takahashi et al. (2001 [triangle]). For the synthesis, see: Sato (1996 [triangle]); Niziołek et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2929-scheme1.jpg

Experimental

Crystal data

  • C23H20NO2 +·CF3SO3
  • M r = 491.48
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2929-efi1.jpg
  • a = 9.5841 (4) Å
  • b = 11.2491 (6) Å
  • c = 12.1738 (3) Å
  • α = 106.080 (3)°
  • β = 101.890 (3)°
  • γ = 110.755 (4)°
  • V = 1109.66 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 295 K
  • 0.58 × 0.18 × 0.05 mm

Data collection

  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer
  • 9670 measured reflections
  • 3922 independent reflections
  • 3124 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.125
  • S = 1.09
  • 3922 reflections
  • 321 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)
Table 2
π–π inter­actions (Å,°)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810041449/ng5042sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041449/ng5042Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143 – contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education for the period 2007–2010 – and DS/8820-4-0087-0).

supplementary crystallographic information

Comment

Chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels based on 9-(phenoxycarbonyl)-10-methylacridinium salts are widely used in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Brown et al., 2009; Natrajan et al., 2010). The efficiency of chemiluminescence – crucial for analytical applications – is affected by the structure of the phenyl fragment. We thus undertook investigations into 9-(phenoxycarbonyl)-10-methylacridinium salts variously substituted at the benzene ring. Here we present the structure of 9-(2,6-dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Krzymiński et al., 2009; Niziołek et al., 2009). With respective average deviations from planarity of 0.0629 (3) Å and 0.0046 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 31.4 (1)°. The carboxyl group is twisted at an angle of 66.3 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle 0.0 (1)°) in the lattice.

In the crystal structure, the inversely oriented cations are linked through a network of C–H···π (Table 1, Fig. 2) and π–π (Table 3, Fig. 2) interactions, the adjacent cations and anions via C–H···O (Table 1, Fig. 2) and C–F···π (Table 2, Fig. 2) interactions. The C–H···O (Novoa et al. 2006) interactions are of the hydrogen bond type. The C–H···π (Takahashi et al. 2001) interactions should be of an attractive nature, like C–F···π (Dorn et al., 2005) and the π–π (Hunter et al., 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

Experimental

2,6-Dimethylphenylacridine-9-carboxylate was synthesized first in the reaction of 9-(chlorocarbonyl)acridine (obtained by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride) with 2,6-dimethylphenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h) (Sato, 1996). The ester thereby obtained, purified chromatographically (SiO2, cyclohexane/ethyl acetate, 1/1 v/v), was quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-(2,6-dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with 20 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 552–555 K).

Refinement

The H26A, H26B and H26C atoms were located on a Fourier-difference map, restrained by DFIX command 0.960 for C–H distance and by DFIX 1.568 for H···H distance, and refined as riding with Uiso(H) = 1.5Ueq(C). All other H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. ...
Fig. 2.
The arrangement of the ions in the crystal structure. The C–H···O and C–H···π interactions are represented by dashed lines, the C–F···π and ...

Crystal data

C23H20NO2+·CF3SO3Z = 2
Mr = 491.48F(000) = 508
Triclinic, P1Dx = 1.471 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5841 (4) ÅCell parameters from 66666 reflections
b = 11.2491 (6) Åθ = 3.0–29.1°
c = 12.1738 (3) ŵ = 0.21 mm1
α = 106.080 (3)°T = 295 K
β = 101.890 (3)°Prism, light-yellow
γ = 110.755 (4)°0.58 × 0.18 × 0.05 mm
V = 1109.66 (8) Å3

Data collection

Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer3124 reflections with I > 2σ(I)
Radiation source: Enhanced (Mo) X-ray SourceRint = 0.016
graphiteθmax = 25.1°, θmin = 3.1°
Detector resolution: 10.4002 pixels mm-1h = −11→11
ω scansk = −13→10
9670 measured reflectionsl = −14→14
3922 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0673P)2 + 0.2264P] where P = (Fo2 + 2Fc2)/3
3922 reflections(Δ/σ)max = 0.001
321 parametersΔρmax = 0.33 e Å3
6 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3818 (3)0.3638 (2)0.13066 (19)0.0649 (6)
H10.46540.35280.10910.078*
C20.2838 (3)0.3952 (3)0.0588 (2)0.0777 (7)
H20.29960.4048−0.01180.093*
C30.1595 (3)0.4130 (3)0.0913 (2)0.0787 (8)
H30.09320.43500.04190.094*
C40.1322 (3)0.3992 (2)0.1928 (2)0.0687 (6)
H40.04890.41300.21250.082*
C50.2865 (2)0.3196 (2)0.56175 (19)0.0545 (5)
H50.19910.32610.57970.065*
C60.3931 (3)0.3026 (2)0.6409 (2)0.0592 (5)
H60.37710.29750.71260.071*
C70.5267 (2)0.2924 (2)0.61744 (18)0.0557 (5)
H70.59870.28200.67370.067*
C80.5505 (2)0.29779 (19)0.51298 (17)0.0479 (4)
H80.63860.28980.49750.057*
C90.46128 (19)0.32004 (18)0.31651 (16)0.0424 (4)
N100.20515 (16)0.34795 (16)0.37176 (15)0.0499 (4)
C110.3594 (2)0.34746 (19)0.23794 (16)0.0474 (4)
C120.2299 (2)0.36386 (19)0.26929 (17)0.0505 (5)
C130.44292 (19)0.31544 (17)0.42602 (15)0.0411 (4)
C140.30806 (19)0.32732 (18)0.45257 (17)0.0448 (4)
C150.5963 (2)0.29831 (19)0.28346 (16)0.0436 (4)
O160.53926 (14)0.18238 (13)0.18486 (11)0.0503 (3)
O170.73309 (15)0.37184 (15)0.33881 (13)0.0625 (4)
C180.6473 (2)0.1321 (2)0.15004 (17)0.0514 (5)
C190.6730 (3)0.0416 (2)0.1981 (2)0.0641 (6)
C200.7664 (3)−0.0180 (3)0.1546 (3)0.0849 (8)
H200.7870−0.08000.18440.102*
C210.8276 (3)0.0133 (3)0.0693 (3)0.0922 (9)
H210.8888−0.02800.04120.111*
C220.8000 (3)0.1047 (3)0.0246 (2)0.0813 (8)
H220.84280.1245−0.03380.098*
C230.7089 (2)0.1689 (2)0.06460 (19)0.0631 (6)
C240.6045 (4)0.0075 (3)0.2916 (3)0.0923 (9)
H24A0.4922−0.02130.26270.138*
H24B0.65270.08740.36580.138*
H24C0.6248−0.06540.30610.138*
C250.6814 (3)0.2718 (3)0.0184 (2)0.0835 (8)
H25A0.56970.2402−0.01950.125*
H25B0.73380.2826−0.03990.125*
H25C0.72320.35860.08500.125*
C260.0613 (3)0.3550 (3)0.3959 (3)0.0779 (8)
H26A−0.027 (3)0.305 (3)0.3197 (17)0.113 (10)*
H26B0.034 (3)0.307 (3)0.448 (2)0.106 (11)*
H26C0.069 (5)0.4454 (19)0.431 (3)0.184 (19)*
S270.95913 (6)0.27457 (6)0.72251 (5)0.05989 (19)
O281.1219 (2)0.3034 (3)0.77069 (16)0.1008 (7)
O290.9225 (2)0.3134 (2)0.62202 (16)0.0875 (5)
O300.8851 (2)0.3042 (2)0.81008 (15)0.0879 (6)
C310.8618 (4)0.0892 (3)0.6536 (3)0.0856 (8)
F320.8764 (3)0.0335 (2)0.7353 (3)0.1501 (9)
F330.9169 (3)0.0417 (2)0.5713 (2)0.1554 (10)
F340.7072 (2)0.0441 (2)0.5986 (2)0.1331 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0770 (14)0.0765 (15)0.0556 (12)0.0464 (13)0.0212 (10)0.0297 (11)
C20.1007 (19)0.0832 (18)0.0582 (13)0.0549 (16)0.0142 (13)0.0298 (12)
C30.0827 (17)0.0773 (17)0.0680 (15)0.0458 (14)−0.0039 (13)0.0235 (13)
C40.0540 (12)0.0665 (14)0.0776 (15)0.0362 (11)0.0030 (11)0.0176 (12)
C50.0524 (11)0.0474 (11)0.0663 (12)0.0206 (9)0.0297 (10)0.0199 (9)
C60.0715 (13)0.0539 (12)0.0596 (11)0.0266 (10)0.0331 (10)0.0252 (10)
C70.0611 (12)0.0542 (12)0.0549 (11)0.0254 (10)0.0182 (9)0.0261 (9)
C80.0437 (9)0.0490 (11)0.0550 (10)0.0226 (8)0.0171 (8)0.0220 (9)
C90.0369 (8)0.0385 (9)0.0483 (9)0.0161 (7)0.0119 (7)0.0140 (8)
N100.0350 (7)0.0455 (9)0.0609 (9)0.0192 (7)0.0114 (7)0.0099 (7)
C110.0448 (9)0.0433 (10)0.0497 (10)0.0214 (8)0.0091 (8)0.0139 (8)
C120.0421 (9)0.0422 (10)0.0541 (11)0.0186 (8)0.0046 (8)0.0084 (8)
C130.0355 (8)0.0346 (9)0.0484 (9)0.0134 (7)0.0128 (7)0.0130 (7)
C140.0373 (9)0.0344 (9)0.0546 (10)0.0125 (7)0.0149 (8)0.0105 (8)
C150.0425 (10)0.0471 (10)0.0475 (9)0.0223 (8)0.0170 (8)0.0222 (8)
O160.0422 (6)0.0538 (8)0.0512 (7)0.0208 (6)0.0188 (5)0.0130 (6)
O170.0392 (7)0.0589 (9)0.0731 (9)0.0175 (6)0.0162 (6)0.0095 (7)
C180.0414 (9)0.0491 (11)0.0562 (11)0.0166 (8)0.0223 (8)0.0097 (9)
C190.0627 (12)0.0548 (13)0.0801 (14)0.0277 (11)0.0356 (11)0.0225 (11)
C200.0797 (16)0.0653 (16)0.122 (2)0.0416 (14)0.0483 (16)0.0305 (15)
C210.0762 (16)0.0717 (17)0.129 (2)0.0345 (14)0.0622 (17)0.0164 (17)
C220.0696 (15)0.0780 (18)0.0849 (16)0.0207 (13)0.0505 (13)0.0128 (14)
C230.0526 (11)0.0643 (14)0.0577 (11)0.0143 (10)0.0260 (9)0.0121 (10)
C240.125 (2)0.0864 (19)0.118 (2)0.0658 (18)0.0734 (19)0.0631 (17)
C250.0869 (17)0.106 (2)0.0748 (15)0.0398 (16)0.0463 (13)0.0480 (15)
C260.0458 (12)0.101 (2)0.0848 (17)0.0402 (13)0.0235 (12)0.0217 (16)
S270.0655 (3)0.0737 (4)0.0501 (3)0.0355 (3)0.0266 (2)0.0255 (3)
O280.0647 (10)0.1509 (19)0.0711 (11)0.0372 (11)0.0187 (8)0.0367 (12)
O290.1033 (13)0.1112 (14)0.0781 (11)0.0551 (12)0.0399 (10)0.0610 (11)
O300.1185 (15)0.1062 (14)0.0730 (10)0.0705 (12)0.0590 (10)0.0348 (10)
C310.101 (2)0.091 (2)0.0888 (18)0.0516 (17)0.0548 (16)0.0386 (16)
F320.212 (3)0.1266 (17)0.191 (2)0.1025 (18)0.106 (2)0.1062 (17)
F330.187 (2)0.1174 (16)0.164 (2)0.0741 (16)0.1115 (18)0.0081 (14)
F340.0897 (13)0.1208 (16)0.1312 (15)0.0049 (11)0.0360 (11)0.0222 (12)

Geometric parameters (Å, °)

C1—C21.357 (3)O16—C181.426 (2)
C1—C111.417 (3)C18—C191.374 (3)
C1—H10.9300C18—C231.385 (3)
C2—C31.392 (4)C19—C201.398 (3)
C2—H20.9300C19—C241.498 (3)
C3—C41.352 (4)C20—C211.361 (4)
C3—H30.9300C20—H200.9300
C4—C121.419 (3)C21—C221.366 (4)
C4—H40.9300C21—H210.9300
C5—C61.357 (3)C22—C231.396 (3)
C5—C141.408 (3)C22—H220.9300
C5—H50.9300C23—C251.497 (4)
C6—C71.404 (3)C24—H24A0.9600
C6—H60.9300C24—H24B0.9600
C7—C81.351 (3)C24—H24C0.9600
C7—H70.9300C25—H25A0.9600
C8—C131.427 (3)C25—H25B0.9600
C8—H80.9300C25—H25C0.9600
C9—C131.393 (3)C26—H26A0.971 (16)
C9—C111.398 (3)C26—H26B0.966 (16)
C9—C151.510 (2)C26—H26C0.956 (17)
N10—C121.364 (3)S27—O301.4262 (17)
N10—C141.372 (2)S27—O291.4274 (17)
N10—C261.492 (3)S27—O281.4290 (19)
C11—C121.428 (3)S27—C311.803 (3)
C13—C141.436 (2)C31—F331.301 (3)
C15—O171.190 (2)C31—F321.323 (4)
C15—O161.341 (2)C31—F341.331 (3)
C2—C1—C11121.3 (2)C19—C18—O16116.51 (17)
C2—C1—H1119.3C23—C18—O16118.52 (19)
C11—C1—H1119.3C18—C19—C20116.4 (2)
C1—C2—C3119.5 (2)C18—C19—C24122.2 (2)
C1—C2—H2120.3C20—C19—C24121.5 (2)
C3—C2—H2120.3C21—C20—C19121.0 (3)
C4—C3—C2122.0 (2)C21—C20—H20119.5
C4—C3—H3119.0C19—C20—H20119.5
C2—C3—H3119.0C20—C21—C22120.7 (2)
C3—C4—C12120.4 (2)C20—C21—H21119.6
C3—C4—H4119.8C22—C21—H21119.6
C12—C4—H4119.8C21—C22—C23121.3 (2)
C6—C5—C14120.13 (18)C21—C22—H22119.3
C6—C5—H5119.9C23—C22—H22119.3
C14—C5—H5119.9C18—C23—C22115.8 (2)
C5—C6—C7121.8 (2)C18—C23—C25122.5 (2)
C5—C6—H6119.1C22—C23—C25121.7 (2)
C7—C6—H6119.1C19—C24—H24A109.5
C8—C7—C6119.85 (19)C19—C24—H24B109.5
C8—C7—H7120.1H24A—C24—H24B109.5
C6—C7—H7120.1C19—C24—H24C109.5
C7—C8—C13121.10 (18)H24A—C24—H24C109.5
C7—C8—H8119.4H24B—C24—H24C109.5
C13—C8—H8119.4C23—C25—H25A109.5
C13—C9—C11121.32 (16)C23—C25—H25B109.5
C13—C9—C15119.28 (15)H25A—C25—H25B109.5
C11—C9—C15119.39 (17)C23—C25—H25C109.5
C12—N10—C14122.34 (15)H25A—C25—H25C109.5
C12—N10—C26118.00 (18)H25B—C25—H25C109.5
C14—N10—C26119.65 (19)N10—C26—H26A108.1 (18)
C9—C11—C1122.93 (18)N10—C26—H26B109.5 (19)
C9—C11—C12118.46 (18)H26A—C26—H26B106.0 (18)
C1—C11—C12118.58 (18)N10—C26—H26C116 (3)
N10—C12—C4122.02 (19)H26A—C26—H26C109 (2)
N10—C12—C11119.78 (17)H26B—C26—H26C108 (2)
C4—C12—C11118.2 (2)O30—S27—O29115.49 (12)
C9—C13—C8123.28 (16)O30—S27—O28115.69 (11)
C9—C13—C14118.62 (16)O29—S27—O28114.61 (12)
C8—C13—C14118.10 (17)O30—S27—C31102.71 (12)
N10—C14—C5121.83 (17)O29—S27—C31102.86 (13)
N10—C14—C13119.14 (17)O28—S27—C31102.72 (15)
C5—C14—C13119.02 (17)F33—C31—F32108.6 (3)
O17—C15—O16125.17 (17)F33—C31—F34106.8 (3)
O17—C15—C9124.77 (17)F32—C31—F34106.9 (3)
O16—C15—C9110.03 (14)F33—C31—S27111.8 (2)
C15—O16—C18118.64 (14)F32—C31—S27111.7 (2)
C19—C18—C23124.78 (19)F34—C31—S27110.7 (2)
C11—C1—C2—C30.6 (4)C8—C13—C14—N10178.32 (15)
C1—C2—C3—C4−0.4 (4)C9—C13—C14—C5178.53 (16)
C2—C3—C4—C12−0.9 (4)C8—C13—C14—C5−0.7 (2)
C14—C5—C6—C70.1 (3)C13—C9—C15—O17−63.4 (3)
C5—C6—C7—C8−0.9 (3)C11—C9—C15—O17115.1 (2)
C6—C7—C8—C130.8 (3)C13—C9—C15—O16114.90 (17)
C13—C9—C11—C1174.81 (18)C11—C9—C15—O16−66.6 (2)
C15—C9—C11—C1−3.7 (3)O17—C15—O16—C187.9 (3)
C13—C9—C11—C12−3.2 (3)C9—C15—O16—C18−170.39 (16)
C15—C9—C11—C12178.28 (16)C15—O16—C18—C1990.5 (2)
C2—C1—C11—C9−177.6 (2)C15—O16—C18—C23−94.2 (2)
C2—C1—C11—C120.4 (3)C23—C18—C19—C20−1.1 (3)
C14—N10—C12—C4−173.36 (18)O16—C18—C19—C20173.85 (19)
C26—N10—C12—C46.0 (3)C23—C18—C19—C24179.2 (2)
C14—N10—C12—C115.4 (3)O16—C18—C19—C24−5.9 (3)
C26—N10—C12—C11−175.25 (19)C18—C19—C20—C210.0 (4)
C3—C4—C12—N10−179.4 (2)C24—C19—C20—C21179.8 (3)
C3—C4—C12—C111.8 (3)C19—C20—C21—C220.4 (4)
C9—C11—C12—N10−2.2 (3)C20—C21—C22—C230.1 (4)
C1—C11—C12—N10179.66 (17)C19—C18—C23—C221.5 (3)
C9—C11—C12—C4176.56 (17)O16—C18—C23—C22−173.29 (17)
C1—C11—C12—C4−1.5 (3)C19—C18—C23—C25−177.9 (2)
C11—C9—C13—C8−175.30 (17)O16—C18—C23—C257.3 (3)
C15—C9—C13—C83.2 (3)C21—C22—C23—C18−1.0 (4)
C11—C9—C13—C145.5 (3)C21—C22—C23—C25178.4 (2)
C15—C9—C13—C14−175.99 (15)O30—S27—C31—F33−178.7 (2)
C7—C8—C13—C9−179.25 (18)O29—S27—C31—F3361.1 (3)
C7—C8—C13—C140.0 (3)O28—S27—C31—F33−58.3 (3)
C12—N10—C14—C5175.98 (17)O30—S27—C31—F32−56.7 (2)
C26—N10—C14—C5−3.4 (3)O29—S27—C31—F32−177.0 (2)
C12—N10—C14—C13−3.0 (3)O28—S27—C31—F3263.7 (2)
C26—N10—C14—C13177.62 (19)O30—S27—C31—F3462.4 (2)
C6—C5—C14—N10−178.31 (18)O29—S27—C31—F34−57.9 (2)
C6—C5—C14—C130.7 (3)O28—S27—C31—F34−177.18 (19)
C9—C13—C14—N10−2.4 (2)

Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O28i0.932.513.224 (3)134
C25—H25B···O30ii0.962.573.525 (3)176
C26—H26A···Cg4iii0.96 (3)2.86 (2)3.774 (3)158 (3)
C26—H26B···O29iii0.96 (3)2.56 (3)3.369 (4)142 (2)

Symmetry codes: (i) x−1, y, z−1; (ii) x, y, z−1; (iii) x−1, y, z.

Table 2 C–F···π interactions (Å,°).

Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively.

XIJI···JX···JXI···J
C31F32Cg1iv3.655 (3)4.490 (4)121.5 (2)
C31F32Cg3iv3.886 (3)3.974 (4)84.1 (2)
C31F33Cg3iv3.746 (3)3.974 (4)90.4 (2)
C31F34Cg3iv3.481 (2)3.974 (4)101.9 (2)

Symmetry code: (iv) –x + 1, –y, –z + 1.

Table 3 π–π interactions (Å,°).

Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.

IJCgI···CgJDihedral angleCgI_PerpCgI_Offset
13v3.502 (2)2.71 (10)3.473 (1)0.445 (1)
23v3.977 (2)6.38 (11)3.286 (1)2.240 (1)
31v3.502 (2)2.71 (10)3.470 (1)0.480 (1)
32v3.977 (2)6.38 (11)3.503 (1)1.883 (1)

Symmetry code: (v) –x + 1, –y + 1, –z + 1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5042).

References

  • Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem.7, 386–394. [PubMed]
  • Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.
  • Krzymiński, K., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o789–o790. [PMC free article] [PubMed]
  • Natrajan, A., Sharpe, D., Costello, J. & Jiang, Q. (2010). Anal. Biochem.406, 204–213. [PubMed]
  • Niziołek, A., Zadykowicz, B., Trzybiński, D., Sikorski, A., Krzymiński, K. & Błazejowski, J. (2009). J. Mol. Struct.920, 231–237.
  • Novoa, J. J., Mota, F. & D’Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.
  • Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Sato, N. (1996). Tetrahedron Lett.37, 8519–8522.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography