PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2733.
Published online 2010 October 9. doi:  10.1107/S1600536810039097
PMCID: PMC3009351

1-(2-Azido­acet­yl)-3-methyl-2,6-diphenyl­piperidin-4-one

Abstract

In the title compound, C20H20N4O2, the piperidine ring adopts a distorted boat conformation. The two phenyl rings form dihedral angles of 82.87 (1) and 84.40 (1)° with respect to the piperidine ring. The crystal packing is stabilized by inter­molecular C—H(...)O and C—H(...)N inter­actions.

Related literature

For the biological activity of piperidines, see: Aridoss et al. (2008 [triangle], 2010 [triangle]). For ring conformational analysis, see: Cremer & Pople (1975 [triangle]); Nardelli (1983 [triangle]). For related structures, see: Jeyaraman et al. (1999 [triangle]); Keana & Cai (1990 [triangle]); Ponnuswamy et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2733-scheme1.jpg

Experimental

Crystal data

  • C20H20N4O2
  • M r = 348.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2733-efi1.jpg
  • a = 11.0418 (3) Å
  • b = 15.7844 (5) Å
  • c = 10.5684 (3) Å
  • β = 108.458 (2)°
  • V = 1747.19 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 292 K
  • 0.25 × 0.23 × 0.2 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.978, T max = 0.983
  • 16435 measured reflections
  • 4286 independent reflections
  • 3147 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.138
  • S = 1.05
  • 4286 reflections
  • 236 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810039097/bt5365sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039097/bt5365Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HY acknowledges Yeungnam University for the opportunity to work as a Full-Time Foreign Instructor. SS and DV thank the TBI X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the University Grants Commission (UGC and SAP) for financial support.

supplementary crystallographic information

Comment

2,6-Diarylpiperidin-4-ones normally adopt chair conformation with equatorial orientation of all the substituents. Nevertheless, introduction of some heteroconjugate groups such as –NO, –CHO, –COCH3, –COC6H5, etc., at the heteroatom of 2,6-disubstitutedpiperidine ring system have reported to cause a major change in ring conformation, and orientation of the substituents (Jeyaraman et al., 1999; Ponnuswamy et al., 2002). To establish the conformational impact of azidoacetyl group at the nitrogen of 2,6-diphenyl -3-methylpiperidin-4-one, the current study has been undertaken.

The ORTEP plot of the title molecule is shown in Fig.1. The piperidine ring adopts a distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) of q2 = 0.699 (5) Å, q3 = -0.043 (2) Å, [var phi]2 = 68.242 (8)° and Δs (C1 and C4) = 9.5 (2) Å. The sum of the bond angles around the atom N1[(355.42 (3)°] of the piperidine ring is in accordance with the sp2 hybridization.

The crystal structure is stabilized by C—H···O and C—H···N intermolecular interactions which link the molecules into chains running along the c axis. Atoms C2 and C5 at (x, y, z) donate one proton to acceptor O2 and N2 at (-x + 1, -y, -z), forming a centrosymmetric dimers (Fig. 2) with R22(12) ring motifs.

Experimental

1-(2-Azidoacetyl)-3-methyl-2,6-diphenylpiperidin-4-one was prepared from the reaction of 1-chloroacetyl-3-methyl-2,6-diphenylpiperidin -4-one with NaN3 as per the reported procedure (Keana & Cai, 1990). The obtained crude mass was purified by column chromatography followed by recrystallization from ethanol giving colourless, diffraction quality crystals.

Refinement

The C bound H atoms positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Figures

Fig. 1.
Perspective view of the molecule showing the thermal ellipsoids drawn at 30% probability level.
Fig. 2.
The crystal packing of the molecules viewed down a axis. For clarity, hydrogen atoms which are not involved in hydrogen bonding are omitted

Crystal data

C20H20N4O2F(000) = 736
Mr = 348.40Dx = 1.324 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1520 reflections
a = 11.0418 (3) Åθ = 1.9–28.5°
b = 15.7844 (5) ŵ = 0.09 mm1
c = 10.5684 (3) ÅT = 292 K
β = 108.458 (2)°Block, colourless
V = 1747.19 (9) Å30.25 × 0.23 × 0.2 mm
Z = 4

Data collection

Bruker SMART APEXII area-detector diffractometer4286 independent reflections
Radiation source: fine-focus sealed tube3147 reflections with I > 2σ(I)
graphiteRint = 0.026
ω and [var phi] scansθmax = 28.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −14→14
Tmin = 0.978, Tmax = 0.983k = −19→21
16435 measured reflectionsl = −14→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0678P)2 + 0.3241P] where P = (Fo2 + 2Fc2)/3
4286 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.59213 (13)0.02968 (9)0.33092 (13)0.0366 (3)
H10.50500.05210.30730.044*
C20.57944 (14)−0.06647 (9)0.32572 (15)0.0411 (3)
H2A0.5489−0.08530.39760.049*
H2B0.5166−0.08270.24210.049*
C30.70355 (14)−0.10988 (9)0.33785 (14)0.0392 (3)
C40.80956 (13)−0.05375 (9)0.32448 (14)0.0386 (3)
H40.8441−0.02280.40870.046*
C50.75819 (13)0.01278 (9)0.21275 (13)0.0360 (3)
H50.7324−0.01820.12810.043*
C60.86401 (14)0.07294 (9)0.20829 (14)0.0387 (3)
C70.92891 (16)0.12263 (10)0.31632 (17)0.0498 (4)
H70.90250.12390.39160.060*
C81.03309 (18)0.17048 (12)0.3130 (2)0.0638 (5)
H81.07640.20340.38630.077*
C91.07271 (18)0.16958 (12)0.2027 (2)0.0661 (5)
H91.14300.20150.20120.079*
C101.00821 (19)0.12146 (13)0.0946 (2)0.0670 (5)
H101.03410.12110.01900.080*
C110.90476 (17)0.07345 (11)0.09768 (17)0.0536 (4)
H110.86170.04080.02380.064*
C120.91822 (16)−0.10347 (11)0.30249 (19)0.0556 (4)
H12A0.9447−0.14710.36880.083*
H12B0.9887−0.06610.30930.083*
H12C0.8903−0.12870.21540.083*
C130.66501 (13)0.06839 (9)0.46567 (14)0.0386 (3)
C140.70059 (15)0.02104 (11)0.58243 (15)0.0489 (4)
H140.6877−0.03730.57830.059*
C150.75481 (18)0.05956 (14)0.70438 (17)0.0639 (5)
H150.77840.02690.78160.077*
C160.77431 (18)0.14548 (15)0.71305 (19)0.0683 (6)
H160.80880.17130.79580.082*
C170.74226 (18)0.19344 (12)0.5977 (2)0.0645 (5)
H170.75720.25150.60250.077*
C180.68785 (16)0.15484 (10)0.47485 (17)0.0506 (4)
H180.66640.18740.39760.061*
C190.56623 (15)0.09208 (9)0.10767 (14)0.0416 (3)
C200.43631 (16)0.12667 (11)0.10659 (16)0.0531 (4)
H20A0.38920.08220.13390.064*
H20B0.44930.17260.17050.064*
N10.64214 (11)0.05607 (7)0.22287 (11)0.0364 (3)
N20.36126 (14)0.15755 (9)−0.02523 (14)0.0570 (4)
N30.38863 (12)0.22845 (9)−0.05698 (13)0.0475 (3)
N40.39979 (17)0.29178 (11)−0.09966 (16)0.0670 (4)
O10.71688 (12)−0.18542 (7)0.35828 (12)0.0547 (3)
O20.59960 (12)0.09701 (8)0.00863 (11)0.0566 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0380 (7)0.0361 (7)0.0357 (7)0.0033 (5)0.0116 (6)0.0017 (6)
C20.0417 (7)0.0383 (8)0.0434 (8)−0.0047 (6)0.0138 (6)−0.0010 (6)
C30.0512 (8)0.0315 (7)0.0369 (7)0.0001 (6)0.0168 (6)0.0005 (6)
C40.0421 (7)0.0328 (7)0.0418 (8)0.0028 (5)0.0146 (6)0.0015 (6)
C50.0416 (7)0.0327 (7)0.0337 (7)−0.0015 (5)0.0119 (6)−0.0024 (5)
C60.0421 (7)0.0339 (7)0.0391 (7)−0.0004 (5)0.0114 (6)0.0043 (6)
C70.0534 (9)0.0450 (9)0.0493 (9)−0.0079 (7)0.0137 (7)−0.0027 (7)
C80.0559 (10)0.0492 (10)0.0768 (13)−0.0137 (8)0.0077 (9)−0.0012 (9)
C90.0519 (10)0.0532 (10)0.0941 (15)−0.0071 (8)0.0244 (10)0.0206 (10)
C100.0680 (12)0.0710 (13)0.0728 (13)−0.0020 (10)0.0375 (11)0.0185 (10)
C110.0605 (10)0.0582 (10)0.0459 (9)−0.0059 (8)0.0222 (8)0.0021 (7)
C120.0505 (9)0.0487 (9)0.0719 (11)0.0104 (7)0.0254 (9)0.0090 (8)
C130.0379 (7)0.0405 (8)0.0376 (7)0.0066 (5)0.0124 (6)−0.0014 (6)
C140.0516 (9)0.0536 (10)0.0410 (8)0.0025 (7)0.0139 (7)0.0029 (7)
C150.0606 (11)0.0864 (15)0.0393 (9)0.0048 (9)0.0083 (8)0.0006 (9)
C160.0568 (10)0.0925 (16)0.0474 (10)0.0053 (10)0.0049 (8)−0.0255 (10)
C170.0606 (11)0.0529 (10)0.0714 (13)0.0038 (8)0.0087 (9)−0.0231 (9)
C180.0559 (9)0.0409 (8)0.0501 (9)0.0066 (7)0.0099 (7)−0.0051 (7)
C190.0483 (8)0.0361 (7)0.0344 (7)−0.0034 (6)0.0044 (6)−0.0004 (6)
C200.0542 (9)0.0537 (10)0.0445 (9)0.0093 (7)0.0057 (7)0.0037 (7)
N10.0403 (6)0.0343 (6)0.0330 (6)0.0011 (5)0.0093 (5)0.0010 (5)
N20.0614 (8)0.0418 (8)0.0505 (8)0.0023 (6)−0.0070 (7)0.0026 (6)
N30.0451 (7)0.0496 (8)0.0402 (7)0.0029 (6)0.0029 (6)−0.0050 (6)
N40.0798 (11)0.0576 (10)0.0584 (10)−0.0084 (8)0.0145 (8)0.0053 (8)
O10.0714 (8)0.0328 (6)0.0688 (8)0.0034 (5)0.0347 (6)0.0067 (5)
O20.0614 (7)0.0684 (8)0.0369 (6)0.0013 (6)0.0112 (5)0.0091 (5)

Geometric parameters (Å, °)

C1—N11.4771 (17)C10—H100.9300
C1—C21.5235 (19)C11—H110.9300
C1—C131.5243 (19)C12—H12A0.9600
C1—H10.9800C12—H12B0.9600
C2—C31.501 (2)C12—H12C0.9600
C2—H2A0.9700C13—C181.386 (2)
C2—H2B0.9700C13—C141.389 (2)
C3—O11.2123 (16)C14—C151.379 (2)
C3—C41.510 (2)C14—H140.9300
C4—C121.512 (2)C15—C161.372 (3)
C4—C51.5476 (19)C15—H150.9300
C4—H40.9800C16—C171.383 (3)
C5—N11.4856 (17)C16—H160.9300
C5—C61.5179 (19)C17—C181.387 (2)
C5—H50.9800C17—H170.9300
C6—C111.379 (2)C18—H180.9300
C6—C71.384 (2)C19—O21.2172 (18)
C7—C81.386 (2)C19—N11.3645 (18)
C7—H70.9300C19—C201.532 (2)
C8—C91.369 (3)C20—N21.461 (2)
C8—H80.9300C20—H20A0.9700
C9—C101.369 (3)C20—H20B0.9700
C9—H90.9300N2—N31.233 (2)
C10—C111.380 (3)N3—N41.119 (2)
N1—C1—C2107.80 (11)C10—C11—C6121.20 (17)
N1—C1—C13113.16 (11)C10—C11—H11119.4
C2—C1—C13116.63 (12)C6—C11—H11119.4
N1—C1—H1106.2C4—C12—H12A109.5
C2—C1—H1106.2C4—C12—H12B109.5
C13—C1—H1106.2H12A—C12—H12B109.5
C3—C2—C1112.38 (12)C4—C12—H12C109.5
C3—C2—H2A109.1H12A—C12—H12C109.5
C1—C2—H2A109.1H12B—C12—H12C109.5
C3—C2—H2B109.1C18—C13—C14118.28 (14)
C1—C2—H2B109.1C18—C13—C1119.39 (13)
H2A—C2—H2B107.9C14—C13—C1122.12 (13)
O1—C3—C2121.36 (13)C15—C14—C13120.68 (17)
O1—C3—C4122.66 (13)C15—C14—H14119.7
C2—C3—C4115.97 (11)C13—C14—H14119.7
C3—C4—C12112.72 (12)C16—C15—C14120.73 (18)
C3—C4—C5111.22 (12)C16—C15—H15119.6
C12—C4—C5110.61 (12)C14—C15—H15119.6
C3—C4—H4107.3C15—C16—C17119.44 (17)
C12—C4—H4107.3C15—C16—H16120.3
C5—C4—H4107.3C17—C16—H16120.3
N1—C5—C6113.86 (11)C16—C17—C18119.93 (18)
N1—C5—C4111.92 (10)C16—C17—H17120.0
C6—C5—C4110.39 (11)C18—C17—H17120.0
N1—C5—H5106.7C17—C18—C13120.90 (17)
C6—C5—H5106.7C17—C18—H18119.6
C4—C5—H5106.7C13—C18—H18119.6
C11—C6—C7118.25 (14)O2—C19—N1121.75 (14)
C11—C6—C5119.41 (13)O2—C19—C20120.57 (13)
C7—C6—C5122.12 (13)N1—C19—C20117.68 (13)
C6—C7—C8120.36 (16)N2—C20—C19111.92 (14)
C6—C7—H7119.8N2—C20—H20A109.2
C8—C7—H7119.8C19—C20—H20A109.2
C9—C8—C7120.50 (18)N2—C20—H20B109.2
C9—C8—H8119.8C19—C20—H20B109.2
C7—C8—H8119.8H20A—C20—H20B107.9
C8—C9—C10119.64 (16)C19—N1—C1122.20 (12)
C8—C9—H9120.2C19—N1—C5115.31 (11)
C10—C9—H9120.2C1—N1—C5117.91 (10)
C9—C10—C11120.04 (17)N3—N2—C20116.64 (14)
C9—C10—H10120.0N4—N3—N2171.04 (17)
C11—C10—H10120.0
N1—C1—C2—C357.25 (15)N1—C1—C13—C14−135.96 (14)
C13—C1—C2—C3−71.29 (15)C2—C1—C13—C14−10.06 (19)
C1—C2—C3—O1167.38 (13)C18—C13—C14—C151.3 (2)
C1—C2—C3—C4−12.02 (17)C1—C13—C14—C15−173.35 (14)
O1—C3—C4—C1215.3 (2)C13—C14—C15—C160.3 (3)
C2—C3—C4—C12−165.33 (13)C14—C15—C16—C17−1.7 (3)
O1—C3—C4—C5140.15 (14)C15—C16—C17—C181.6 (3)
C2—C3—C4—C5−40.45 (16)C16—C17—C18—C13−0.1 (3)
C3—C4—C5—N147.54 (15)C14—C13—C18—C17−1.4 (2)
C12—C4—C5—N1173.60 (12)C1—C13—C18—C17173.41 (14)
C3—C4—C5—C6175.48 (11)O2—C19—C20—N24.4 (2)
C12—C4—C5—C6−58.46 (16)N1—C19—C20—N2−175.73 (13)
N1—C5—C6—C11−118.49 (15)O2—C19—N1—C1−163.94 (13)
C4—C5—C6—C11114.64 (15)C20—C19—N1—C116.16 (19)
N1—C5—C6—C767.05 (17)O2—C19—N1—C5−8.5 (2)
C4—C5—C6—C7−59.82 (18)C20—C19—N1—C5171.63 (12)
C11—C6—C7—C8−0.9 (2)C2—C1—N1—C19104.11 (14)
C5—C6—C7—C8173.64 (15)C13—C1—N1—C19−125.40 (13)
C6—C7—C8—C90.4 (3)C2—C1—N1—C5−50.76 (15)
C7—C8—C9—C100.5 (3)C13—C1—N1—C579.74 (14)
C8—C9—C10—C11−0.7 (3)C6—C5—N1—C1976.01 (15)
C9—C10—C11—C60.2 (3)C4—C5—N1—C19−157.92 (12)
C7—C6—C11—C100.6 (2)C6—C5—N1—C1−127.41 (12)
C5—C6—C11—C10−174.06 (16)C4—C5—N1—C1−1.34 (16)
N1—C1—C13—C1849.44 (17)C19—C20—N2—N3−79.48 (19)
C2—C1—C13—C18175.34 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.573.464 (2)162
C5—H5···N2ii0.982.523.353 (2)142
C2—H2B···O2ii0.972.563.4933 (19)161

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5365).

References

  • Aridoss, G., Amirthaganesan, S., Ashok Kumar, N., Kim, J. T., Lim, K. T., Kabilan, S. & Jeong, Y. T. (2008). Bioorg. Med. Chem. Lett.18, 6542–6548. [PubMed]
  • Aridoss, G., Amirthaganesan, S. & Jeong, Y. T. (2010). Bioorg. Med. Chem. Lett.20, 2242–2249. [PubMed]
  • Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jeyaraman, R., Thenmozhiyal, J. C., Murugadoss, R. & Venkatraj, M. (1999). Indian J. Chem. Sect. B, 38, 325–336.
  • Keana, J. F. W. & Cai, X. S. (1990). J. Org. Chem.55, 3640–3647.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Ponnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). Indian J. Chem. Sect. B, 41, 614–627.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography