PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o3033–o3034.
Published online 2010 October 31. doi:  10.1107/S1600536810043941
PMCID: PMC3009350

Melaminium nitrate–melamine–water (1/1/1)

Abstract

In the crystal structure of the title salt, C3H7N6 +·NO3 ·C3H6N6·H2O, the asymmetric unit consists of two neutral melamine (1,3,5-triazine-2,4,6-triamine) mol­ecules, two melaminium cations, two nitrate anions and two solvent water mol­ecules. One of the nitrate anions is disordered over two sets of positions, with a refined occupancy ratio of 0.909 (3):0.091 (3). The cations and neutral mol­ecules are approximately planar, with maximum deviations of 0.018 (2), 0.024 (2), 0.019 (2) and 0.007 (2) Å for each, respectively. In the crystal structure, melaminium cations and netural melamine mol­ecules self-assemble via N—H(...)N hydrogen bonds to form a supra­molecular hexa­gonal-shaped motif. In addition, the nitrate anions and water mol­ecules are connected by N—H(...)O hydrogen bonds to form a three-dimensional network.

Related literature

For applications of melamine, see: Rima et al. (2008 [triangle]); Cook et al. (2005 [triangle]); Ramos Silva et al. (2008 [triangle]). For related structures, see: Debrus et al. (2007 [triangle]); Zhao & Shi (2010 [triangle]); Marchewka & Pietraszko (2003 [triangle]); Marchewka (2002 [triangle]). For applications of hydrogen bonding, see: Aghabozorg et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3033-scheme1.jpg

Experimental

Crystal data

  • C3H7N6 +·NO3 ·C3H6N6·H2O
  • M r = 333.31
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3033-efi1.jpg
  • a = 7.7759 (1) Å
  • b = 9.0035 (1) Å
  • c = 19.4573 (3) Å
  • α = 96.182 (1)°
  • β = 90.854 (1)°
  • γ = 99.828 (1)°
  • V = 1333.64 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.14 mm−1
  • T = 296 K
  • 0.21 × 0.14 × 0.09 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.972, T max = 0.987
  • 22196 measured reflections
  • 5160 independent reflections
  • 3689 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.123
  • S = 1.03
  • 5160 reflections
  • 543 parameters
  • All H-atom parameters refined
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810043941/lh5157sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043941/lh5157Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Malaysian Government for a USM-RU-PRGS grant (No. 1001/PKIMIA/842020) and an RU grant (No. 10001/PKIMIA/814019) which partly supported this work. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for a Research University grant (No. 1001/PFIZIK/811160). MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

supplementary crystallographic information

Comment

1,3,5-triazine-2,4,6-triamine is an organic base also known as melamine. Melamine is very widely used in several industries, such as the production of melamine foam in polymeric cleaning (Rima et al., 2008) and also as a chemical intermediate in amino resin and plastics manufacturing (Cook et al., 2005). Melamine can be a proton acceptor and will form 2,4,6-triamino-1,3,5-triazine-1-ium (Ramos Silva et al., 2008). Recently many melaminium complexes in crystalline form has been reported, such as melaminium-bis(trichloroacetate) monohydrate (Debrus et al., 2007), melaminium iodide monohydrate (Zhao & Shi, 2010) and melaminium citrate (Marchewka & Pietraszko, 2003). Melaminium salt crystals have shown interesting properties like nonlinear optical behaviour (Marchewka, 2002). In the formation of melaminium salt crystals, molecules are bound to each other via hydrogen bonds. Hydrogen bonding plays an important role in the catalytic, biochemical activities and also in supramolecular chemistry and crystal engineering (Aghabozorg et al., 2008). Here, we report the crystal structure of a melaminium salt. This crystal was obtained as a by-product during our attempt to form crown complexes with melamine.

The asymmetric unit of the title compound consists of two crystallographically independent protonated melaminium cations (A & C), two nitrate anions (A & B), two neutral melamine molecules (B & D) and two water molecules (Fig. 1). One of the nitrate anion is disordered over two sets of position, with refined occupancy ratios of 0.909 (3):0.091 (3). The protonated and neutral melamine molecules are essentially planar, with a maximum deviation of 0.018 (2) Å for atom C2A (molecule A), 0.024 (2) Å for atom C2C (molecule C), 0.019 (2) Å for atom C2B (molecule B) and 0.007 (2) Å for atom C2D (molecule D).

In the crystal structure (Fig.2), the protonated melaminium cations and the neutral melamine molecules self-assemble via N—H···N hydrogen bonds to form a supramolecular hexagonal motif. Furthermore, the nitrate anions and water molecules are connected by N—H···O (Table 1) hydrogen bonds to form a three-dimensional network.

Experimental

0.36 g (2.856 mmol) of melamine, 0.50 g (2.856 mmol) of 1,4-bis(chloromethyl)benzene and 1.0 ml triethylamine were added into 40 mL acetonitrile and refluxed for 72 hours at 348 K. The white precipitate was collected by simple filtration and dried at 373 K for 24 hours. About 0.5 g of the white precipitate was dissolved in 10 mL distilled water followed by 0.5 g (1.718 mmol) of cobalt(II) nitrate. The pH was adjusted to 7.0 by a few drops of 1.0 M sodium hydroxide. The mixture was stirred for 2 h and then filtered off. The resulting mixture was kept at room temperature for recrystallization. Recrystallization was carried out twice by using distilled water to get the pure crystal.

Refinement

All the H atoms were located in a difference Fourier map and allowed to refine freely [N—H = 0.80 (2)–0.96 (2) Å and O—H = 0.85 (4)–0.96 (3) Å]. One of the nitrate anion is disordered over two sets of positions, with refined occupancy ratios of 0.909 (3):0.091 (3).

Figures

Fig. 1.
The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Open bonds represents disorder components.
Fig. 2.
The crystal packing of the title compound, showing the hydrogen-bonded (dashed lines) network.

Crystal data

C3H7N6+·NO3·C3H6N6·H2OZ = 4
Mr = 333.31F(000) = 696
Triclinic, P1Dx = 1.660 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7759 (1) ÅCell parameters from 3833 reflections
b = 9.0035 (1) Åθ = 2.3–29.8°
c = 19.4573 (3) ŵ = 0.14 mm1
α = 96.182 (1)°T = 296 K
β = 90.854 (1)°Block, purple
γ = 99.828 (1)°0.21 × 0.14 × 0.09 mm
V = 1333.64 (3) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5160 independent reflections
Radiation source: fine-focus sealed tube3689 reflections with I > 2σ(I)
graphiteRint = 0.042
[var phi] and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −8→9
Tmin = 0.972, Tmax = 0.987k = −11→11
22196 measured reflectionsl = −23→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123All H-atom parameters refined
S = 1.03w = 1/[σ2(Fo2) + (0.0625P)2 + 0.2158P] where P = (Fo2 + 2Fc2)/3
5160 reflections(Δ/σ)max < 0.001
543 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.45 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
N1A0.9356 (2)0.62933 (18)−0.08016 (9)0.0142 (4)
N2A0.7288 (2)0.48794 (18)−0.01488 (8)0.0149 (4)
N3A0.9137 (2)0.71794 (18)0.03718 (8)0.0139 (4)
N4A0.7628 (2)0.4097 (2)−0.12989 (9)0.0176 (4)
N5A0.7043 (2)0.5825 (2)0.09767 (9)0.0172 (4)
N6A1.1157 (2)0.8451 (2)−0.03080 (10)0.0165 (4)
C1A0.8069 (2)0.5077 (2)−0.07424 (10)0.0139 (4)
C2A0.7836 (2)0.5972 (2)0.03848 (10)0.0145 (4)
C3A0.9888 (2)0.7321 (2)−0.02329 (10)0.0136 (4)
N1B0.2450 (2)0.17275 (18)0.20073 (8)0.0157 (4)
N2B0.4686 (2)0.29201 (18)0.13081 (8)0.0149 (4)
N3B0.2675 (2)0.07228 (18)0.08247 (8)0.0152 (4)
N4B0.4452 (2)0.3774 (2)0.24538 (9)0.0183 (4)
N5B0.4750 (2)0.1976 (2)0.01677 (9)0.0160 (4)
N6B0.0627 (2)−0.0409 (2)0.15269 (10)0.0196 (4)
C1B0.3839 (2)0.2789 (2)0.19097 (10)0.0148 (4)
C2B0.4012 (2)0.1864 (2)0.07766 (10)0.0129 (4)
C3B0.1951 (2)0.0700 (2)0.14507 (10)0.0148 (4)
N1C0.4424 (2)1.05878 (19)0.34890 (9)0.0170 (4)
N2C0.4197 (2)1.15377 (18)0.46499 (8)0.0143 (4)
N3C0.2251 (2)0.92779 (18)0.41389 (8)0.0158 (4)
N4C0.6243 (2)1.2761 (2)0.39577 (10)0.0182 (4)
N5C0.2192 (2)1.0143 (2)0.52802 (9)0.0155 (4)
N6C0.2541 (3)0.8500 (2)0.29859 (9)0.0221 (4)
C1C0.4950 (2)1.1634 (2)0.40435 (10)0.0149 (4)
C2C0.2901 (2)1.0327 (2)0.46781 (10)0.0140 (4)
C3C0.3043 (3)0.9436 (2)0.35478 (10)0.0162 (4)
N1D0.2208 (2)0.40060 (18)0.37041 (8)0.0155 (4)
N2D0.2450 (2)0.48189 (18)0.49238 (8)0.0149 (4)
N3D0.0365 (2)0.26250 (18)0.44780 (8)0.0145 (4)
N4D0.4156 (2)0.6117 (2)0.41573 (10)0.0180 (4)
N5D0.0681 (3)0.3419 (2)0.56411 (9)0.0174 (4)
N6D0.0204 (2)0.1911 (2)0.32993 (9)0.0180 (4)
C1D0.2918 (2)0.4954 (2)0.42667 (10)0.0139 (4)
C2D0.1182 (2)0.3630 (2)0.49989 (10)0.0142 (4)
C3D0.0951 (3)0.2865 (2)0.38480 (10)0.0137 (4)
N8A0.7624 (2)0.76433 (19)0.28672 (9)0.0178 (4)*
O1AA0.8234 (2)0.77664 (18)0.22811 (8)0.0211 (4)0.909 (3)
O2AA0.7867 (2)0.87285 (18)0.33240 (8)0.0293 (5)0.909 (3)
O3AA0.6809 (2)0.63698 (18)0.30001 (8)0.0305 (5)0.909 (3)
O1AB0.887 (2)0.8747 (18)0.2933 (8)0.021 (4)*0.091 (3)
O2AB0.649 (2)0.7781 (19)0.3371 (8)0.026 (5)*0.091 (3)
O3AB0.721 (2)0.673 (2)0.2387 (9)0.029 (5)*0.091 (3)
N8B0.5925 (2)0.96755 (18)0.17530 (8)0.0163 (4)
O1B0.46913 (19)0.86023 (16)0.18015 (7)0.0240 (4)
O2B0.66849 (18)0.98031 (16)0.11995 (7)0.0200 (3)
O3B0.64020 (18)1.06308 (15)0.22762 (7)0.0191 (3)
O1W0.1736 (2)0.67667 (17)0.81644 (8)0.0188 (3)
O2W0.0718 (2)0.54790 (17)0.26433 (8)0.0217 (4)
H1N0.997 (3)0.639 (3)−0.1192 (12)0.028 (6)*
H2N0.504 (3)1.061 (3)0.3083 (12)0.032 (7)*
H1A0.816 (3)0.430 (2)−0.1706 (12)0.023 (6)*
H2A0.668 (3)0.328 (3)−0.1251 (13)0.044 (8)*
H3A0.622 (3)0.504 (3)0.1019 (11)0.022 (6)*
H4A0.739 (3)0.648 (3)0.1329 (11)0.019 (6)*
H5A1.154 (3)0.905 (3)0.0016 (12)0.020 (6)*
H6A1.157 (3)0.853 (2)−0.0732 (12)0.020 (6)*
H1B0.382 (3)0.377 (2)0.2808 (11)0.018 (6)*
H2B0.531 (3)0.460 (3)0.2400 (11)0.030 (7)*
H3B0.543 (3)0.276 (3)0.0113 (11)0.022 (6)*
H4B0.426 (3)0.137 (3)−0.0177 (12)0.025 (6)*
H5B0.021 (3)−0.106 (3)0.1195 (12)0.023 (6)*
H6B0.014 (3)−0.044 (3)0.1938 (12)0.027 (7)*
H1C0.676 (3)1.277 (3)0.3554 (13)0.030 (7)*
H2C0.668 (3)1.346 (3)0.4295 (13)0.033 (7)*
H3C0.259 (3)1.082 (3)0.5641 (12)0.025 (6)*
H4C0.138 (3)0.934 (3)0.5318 (12)0.032 (7)*
H5C0.172 (4)0.762 (3)0.3000 (13)0.047 (8)*
H6C0.318 (3)0.858 (2)0.2606 (11)0.016 (6)*
H1D0.458 (3)0.616 (2)0.3741 (11)0.014 (6)*
H2D0.459 (3)0.669 (3)0.4510 (12)0.024 (6)*
H3D0.129 (3)0.396 (3)0.5980 (12)0.030 (7)*
H4D−0.005 (3)0.268 (3)0.5669 (11)0.026 (7)*
H5D−0.051 (3)0.102 (3)0.3382 (12)0.034 (7)*
H6D0.082 (3)0.194 (3)0.2905 (12)0.027 (6)*
H1W10.203 (4)0.765 (3)0.7943 (14)0.054 (9)*
H2W10.270 (4)0.673 (4)0.8371 (17)0.084 (12)*
H1W20.116 (4)0.499 (3)0.2936 (15)0.055 (9)*
H2W2−0.034 (4)0.480 (3)0.2477 (13)0.042 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N1A0.0151 (9)0.0154 (9)0.0106 (9)−0.0008 (7)0.0026 (7)0.0005 (7)
N2A0.0170 (9)0.0132 (9)0.0134 (9)0.0003 (7)0.0005 (7)0.0004 (7)
N3A0.0148 (9)0.0140 (9)0.0118 (9)−0.0006 (7)0.0013 (7)0.0015 (7)
N4A0.0202 (10)0.0178 (10)0.0128 (9)−0.0014 (8)0.0022 (8)−0.0009 (7)
N5A0.0201 (10)0.0155 (10)0.0130 (9)−0.0047 (8)0.0032 (8)−0.0005 (8)
N6A0.0190 (10)0.0168 (9)0.0104 (10)−0.0043 (7)0.0027 (8)−0.0021 (8)
C1A0.0125 (10)0.0135 (10)0.0155 (11)0.0017 (8)−0.0004 (8)0.0017 (8)
C2A0.0137 (10)0.0131 (10)0.0171 (11)0.0023 (8)−0.0003 (8)0.0038 (8)
C3A0.0133 (10)0.0128 (10)0.0153 (10)0.0038 (8)−0.0014 (8)0.0016 (8)
N1B0.0150 (9)0.0172 (9)0.0137 (9)−0.0002 (7)0.0011 (7)0.0006 (7)
N2B0.0151 (9)0.0156 (9)0.0130 (9)0.0005 (7)0.0013 (7)0.0007 (7)
N3B0.0151 (9)0.0157 (9)0.0134 (9)−0.0007 (7)−0.0004 (7)0.0010 (7)
N4B0.0180 (9)0.0215 (10)0.0116 (9)−0.0046 (8)0.0049 (8)−0.0027 (8)
N5B0.0172 (9)0.0156 (10)0.0122 (9)−0.0041 (8)0.0016 (7)−0.0003 (8)
N6B0.0201 (10)0.0228 (10)0.0118 (10)−0.0067 (8)0.0027 (8)−0.0011 (8)
C1B0.0126 (10)0.0156 (10)0.0157 (11)0.0005 (8)0.0004 (8)0.0030 (8)
C2B0.0124 (10)0.0135 (10)0.0133 (10)0.0031 (8)−0.0012 (8)0.0024 (8)
C3B0.0131 (10)0.0173 (11)0.0139 (10)0.0011 (8)0.0001 (8)0.0029 (8)
N1C0.0196 (9)0.0160 (9)0.0131 (9)−0.0026 (7)0.0029 (7)−0.0004 (7)
N2C0.0149 (9)0.0149 (9)0.0127 (9)0.0015 (7)0.0021 (7)0.0009 (7)
N3C0.0189 (9)0.0136 (9)0.0134 (9)−0.0011 (7)0.0013 (7)0.0012 (7)
N4C0.0205 (10)0.0179 (10)0.0131 (10)−0.0037 (8)0.0036 (8)−0.0008 (8)
N5C0.0179 (9)0.0137 (9)0.0129 (9)−0.0021 (8)0.0019 (7)−0.0008 (7)
N6C0.0271 (11)0.0206 (10)0.0142 (10)−0.0064 (8)0.0055 (8)−0.0020 (8)
C1C0.0142 (10)0.0145 (10)0.0163 (11)0.0037 (8)−0.0006 (8)0.0014 (8)
C2C0.0144 (10)0.0127 (10)0.0152 (10)0.0028 (8)0.0001 (8)0.0021 (8)
C3C0.0169 (10)0.0137 (10)0.0172 (11)0.0010 (8)0.0011 (8)0.0016 (8)
N1D0.0168 (9)0.0140 (9)0.0139 (9)−0.0012 (7)0.0007 (7)0.0001 (7)
N2D0.0164 (9)0.0150 (9)0.0130 (9)0.0019 (7)0.0010 (7)0.0015 (7)
N3D0.0162 (9)0.0142 (9)0.0119 (9)0.0000 (7)0.0005 (7)0.0004 (7)
N4D0.0228 (10)0.0174 (10)0.0106 (10)−0.0044 (8)0.0022 (8)−0.0007 (8)
N5D0.0221 (10)0.0152 (10)0.0118 (9)−0.0045 (8)0.0014 (8)−0.0005 (8)
N6D0.0211 (10)0.0182 (10)0.0118 (9)−0.0040 (8)0.0023 (8)−0.0003 (7)
C1D0.0145 (10)0.0132 (10)0.0151 (10)0.0059 (8)0.0003 (8)0.0009 (8)
C2D0.0151 (10)0.0147 (10)0.0137 (10)0.0037 (8)0.0015 (8)0.0037 (8)
C3D0.0152 (10)0.0143 (10)0.0123 (10)0.0040 (8)0.0005 (8)0.0029 (8)
O1AA0.0246 (9)0.0249 (10)0.0128 (8)0.0000 (7)0.0057 (7)0.0038 (7)
O2AA0.0517 (13)0.0175 (9)0.0141 (9)−0.0037 (8)0.0020 (8)−0.0033 (7)
O3AA0.0362 (11)0.0232 (10)0.0240 (10)−0.0163 (8)0.0075 (8)0.0003 (7)
N8B0.0170 (9)0.0162 (9)0.0150 (9)0.0011 (7)0.0005 (7)0.0020 (7)
O1B0.0221 (8)0.0201 (8)0.0247 (8)−0.0096 (6)0.0060 (7)−0.0002 (6)
O2B0.0226 (8)0.0227 (8)0.0130 (7)−0.0007 (6)0.0058 (6)0.0013 (6)
O3B0.0232 (8)0.0179 (8)0.0132 (7)−0.0020 (6)0.0019 (6)−0.0028 (6)
O1W0.0165 (8)0.0196 (8)0.0191 (8)−0.0011 (6)0.0027 (7)0.0031 (6)
O2W0.0239 (9)0.0194 (8)0.0204 (8)−0.0015 (7)−0.0047 (7)0.0048 (7)

Geometric parameters (Å, °)

N1A—C1A1.368 (2)N4C—C1C1.327 (3)
N1A—C3A1.374 (2)N4C—H1C0.89 (2)
N1A—H1N0.91 (2)N4C—H2C0.88 (2)
N2A—C1A1.328 (2)N5C—C2C1.317 (2)
N2A—C2A1.361 (2)N5C—H3C0.90 (2)
N3A—C3A1.330 (2)N5C—H4C0.89 (3)
N3A—C2A1.355 (2)N6C—C3C1.317 (3)
N4A—C1A1.322 (2)N6C—H5C0.93 (3)
N4A—H1A0.92 (2)N6C—H6C0.90 (2)
N4A—H2A0.96 (3)N1D—C3D1.348 (2)
N5A—C2A1.323 (3)N1D—C1D1.361 (2)
N5A—H3A0.88 (2)N2D—C1D1.347 (2)
N5A—H4A0.86 (2)N2D—C2D1.348 (2)
N6A—C3A1.313 (2)N3D—C3D1.341 (2)
N6A—H5A0.80 (2)N3D—C2D1.356 (2)
N6A—H6A0.89 (2)N4D—C1D1.333 (3)
N1B—C1B1.345 (2)N4D—H1D0.88 (2)
N1B—C3B1.352 (2)N4D—H2D0.84 (2)
N2B—C1B1.358 (2)N5D—C2D1.338 (3)
N2B—C2B1.360 (2)N5D—H3D0.86 (2)
N3B—C2B1.343 (2)N5D—H4D0.81 (2)
N3B—C3B1.350 (2)N6D—C3D1.352 (2)
N4B—C1B1.332 (2)N6D—H5D0.93 (2)
N4B—H1B0.85 (2)N6D—H6D0.91 (2)
N4B—H2B0.93 (2)N8A—O3AB1.180 (17)
N5B—C2B1.330 (2)N8A—O2AA1.235 (2)
N5B—H3B0.82 (2)N8A—O1AA1.250 (2)
N5B—H4B0.86 (2)N8A—O1AB1.257 (16)
N6B—C3B1.328 (3)N8A—O3AA1.266 (2)
N6B—H5B0.85 (2)N8A—O2AB1.340 (16)
N6B—H6B0.89 (2)N8B—O2B1.243 (2)
N1C—C1C1.362 (2)N8B—O1B1.253 (2)
N1C—C3C1.375 (3)N8B—O3B1.267 (2)
N1C—H2N0.93 (2)O1W—H1W10.94 (3)
N2C—C1C1.330 (2)O1W—H2W10.85 (4)
N2C—C2C1.359 (2)O2W—H1W20.86 (3)
N3C—C3C1.322 (2)O2W—H2W20.96 (3)
N3C—C2C1.362 (2)
C1A—N1A—C3A119.68 (17)H3C—N5C—H4C123 (2)
C1A—N1A—H1N122.0 (14)C3C—N6C—H5C121.6 (16)
C3A—N1A—H1N117.9 (14)C3C—N6C—H6C119.1 (13)
C1A—N2A—C2A115.58 (16)H5C—N6C—H6C118 (2)
C3A—N3A—C2A115.82 (16)N4C—C1C—N2C120.93 (18)
C1A—N4A—H1A118.4 (13)N4C—C1C—N1C117.64 (18)
C1A—N4A—H2A116.2 (15)N2C—C1C—N1C121.43 (18)
H1A—N4A—H2A125 (2)N5C—C2C—N2C117.48 (17)
C2A—N5A—H3A120.6 (14)N5C—C2C—N3C116.36 (18)
C2A—N5A—H4A118.9 (14)N2C—C2C—N3C126.15 (17)
H3A—N5A—H4A120 (2)N6C—C3C—N3C121.51 (18)
C3A—N6A—H5A120.8 (16)N6C—C3C—N1C116.79 (18)
C3A—N6A—H6A117.5 (14)N3C—C3C—N1C121.70 (17)
H5A—N6A—H6A122 (2)C3D—N1D—C1D114.55 (16)
N4A—C1A—N2A120.93 (18)C1D—N2D—C2D114.67 (16)
N4A—C1A—N1A117.61 (18)C3D—N3D—C2D114.38 (16)
N2A—C1A—N1A121.47 (17)C1D—N4D—H1D119.3 (13)
N5A—C2A—N3A116.94 (17)C1D—N4D—H2D116.6 (15)
N5A—C2A—N2A116.77 (18)H1D—N4D—H2D123 (2)
N3A—C2A—N2A126.28 (18)C2D—N5D—H3D117.8 (15)
N6A—C3A—N3A121.21 (18)C2D—N5D—H4D115.0 (16)
N6A—C3A—N1A117.70 (18)H3D—N5D—H4D126 (2)
N3A—C3A—N1A121.08 (17)C3D—N6D—H5D118.3 (14)
C1B—N1B—C3B114.54 (16)C3D—N6D—H6D115.0 (14)
C1B—N2B—C2B114.46 (16)H5D—N6D—H6D120 (2)
C2B—N3B—C3B115.23 (16)N4D—C1D—N2D117.56 (18)
C1B—N4B—H1B116.4 (14)N4D—C1D—N1D117.41 (18)
C1B—N4B—H2B120.1 (14)N2D—C1D—N1D125.02 (18)
H1B—N4B—H2B121 (2)N5D—C2D—N2D117.53 (18)
C2B—N5B—H3B118.4 (15)N5D—C2D—N3D116.89 (18)
C2B—N5B—H4B117.1 (15)N2D—C2D—N3D125.58 (17)
H3B—N5B—H4B122 (2)N3D—C3D—N1D125.78 (17)
C3B—N6B—H5B122.0 (15)N3D—C3D—N6D118.13 (18)
C3B—N6B—H6B118.3 (14)N1D—C3D—N6D116.07 (17)
H5B—N6B—H6B120 (2)O3AB—N8A—O2AA169.5 (9)
N4B—C1B—N1B117.02 (18)O3AB—N8A—O1AA57.0 (9)
N4B—C1B—N2B117.46 (17)O2AA—N8A—O1AA120.86 (17)
N1B—C1B—N2B125.51 (17)O3AB—N8A—O1AB129.1 (12)
N5B—C2B—N3B118.21 (17)O2AA—N8A—O1AB52.2 (7)
N5B—C2B—N2B116.93 (17)O1AA—N8A—O1AB73.0 (8)
N3B—C2B—N2B124.86 (17)O3AB—N8A—O3AA63.9 (9)
N6B—C3B—N3B117.65 (18)O2AA—N8A—O3AA119.80 (17)
N6B—C3B—N1B117.06 (18)O1AA—N8A—O3AA119.28 (16)
N3B—C3B—N1B125.28 (17)O1AB—N8A—O3AA154.5 (8)
C1C—N1C—C3C119.51 (17)O3AB—N8A—O2AB118.6 (12)
C1C—N1C—H2N120.2 (15)O2AA—N8A—O2AB58.6 (7)
C3C—N1C—H2N120.2 (14)O1AA—N8A—O2AB156.4 (7)
C1C—N2C—C2C115.68 (16)O1AB—N8A—O2AB110.8 (11)
C3C—N3C—C2C115.38 (17)O3AA—N8A—O2AB67.8 (7)
C1C—N4C—H1C118.9 (15)O2B—N8B—O1B120.62 (16)
C1C—N4C—H2C122.7 (15)O2B—N8B—O3B120.05 (16)
H1C—N4C—H2C118 (2)O1B—N8B—O3B119.34 (16)
C2C—N5C—H3C117.8 (14)H1W1—O1W—H2W1102 (3)
C2C—N5C—H4C119.4 (15)H1W2—O2W—H2W2104 (2)
C2A—N2A—C1A—N4A−179.15 (18)C2C—N2C—C1C—N4C−179.32 (18)
C2A—N2A—C1A—N1A0.9 (3)C2C—N2C—C1C—N1C0.9 (3)
C3A—N1A—C1A—N4A−178.41 (18)C3C—N1C—C1C—N4C−177.41 (18)
C3A—N1A—C1A—N2A1.5 (3)C3C—N1C—C1C—N2C2.4 (3)
C3A—N3A—C2A—N5A−178.58 (18)C1C—N2C—C2C—N5C176.16 (18)
C3A—N3A—C2A—N2A2.8 (3)C1C—N2C—C2C—N3C−4.2 (3)
C1A—N2A—C2A—N5A178.11 (18)C3C—N3C—C2C—N5C−176.55 (18)
C1A—N2A—C2A—N3A−3.2 (3)C3C—N3C—C2C—N2C3.8 (3)
C2A—N3A—C3A—N6A179.66 (19)C2C—N3C—C3C—N6C−179.85 (19)
C2A—N3A—C3A—N1A0.0 (3)C2C—N3C—C3C—N1C−0.1 (3)
C1A—N1A—C3A—N6A178.31 (18)C1C—N1C—C3C—N6C176.93 (18)
C1A—N1A—C3A—N3A−2.0 (3)C1C—N1C—C3C—N3C−2.8 (3)
C3B—N1B—C1B—N4B−176.03 (18)C2D—N2D—C1D—N4D179.39 (17)
C3B—N1B—C1B—N2B2.6 (3)C2D—N2D—C1D—N1D0.3 (3)
C2B—N2B—C1B—N4B178.92 (18)C3D—N1D—C1D—N4D−179.25 (17)
C2B—N2B—C1B—N1B0.3 (3)C3D—N1D—C1D—N2D−0.2 (3)
C3B—N3B—C2B—N5B−178.07 (17)C1D—N2D—C2D—N5D178.84 (17)
C3B—N3B—C2B—N2B2.4 (3)C1D—N2D—C2D—N3D−1.2 (3)
C1B—N2B—C2B—N5B177.45 (17)C3D—N3D—C2D—N5D−178.23 (17)
C1B—N2B—C2B—N3B−3.0 (3)C3D—N3D—C2D—N2D1.8 (3)
C2B—N3B—C3B—N6B−179.74 (18)C2D—N3D—C3D—N1D−1.7 (3)
C2B—N3B—C3B—N1B1.0 (3)C2D—N3D—C3D—N6D179.96 (17)
C1B—N1B—C3B—N6B177.44 (18)C1D—N1D—C3D—N3D0.9 (3)
C1B—N1B—C3B—N3B−3.3 (3)C1D—N1D—C3D—N6D179.31 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4A—H1A···O2Wi0.92 (2)2.05 (2)2.965 (2)174.2 (17)
N4B—H1B···N1D0.85 (2)2.18 (2)3.025 (2)174.1 (18)
N4D—H1D···O3AA0.88 (2)2.27 (2)3.077 (2)153 (2)
N1A—H1N···O1Wii0.91 (2)1.89 (2)2.771 (2)165 (2)
N4A—H2A···O1Bi0.96 (3)2.03 (3)2.838 (2)141 (2)
N4B—H2B···O3AA0.93 (3)2.05 (2)2.810 (2)138.8 (18)
N4C—H2C···N2Diii0.88 (3)2.07 (3)2.945 (2)176 (2)
N4D—H2D···N2Ciii0.84 (2)2.23 (2)3.069 (2)172 (2)
N1C—H2N···O3B0.93 (2)1.91 (2)2.836 (2)177 (2)
O2W—H1W2···N1D0.86 (3)2.04 (3)2.899 (2)174 (3)
N5A—H3A···N2B0.88 (3)2.20 (3)3.062 (2)165 (2)
N5B—H3B···N2A0.82 (3)2.30 (3)3.119 (2)175 (2)
N5C—H3C···O2AAiii0.89 (2)2.06 (2)2.799 (2)140 (2)
N5D—H3D···O3AAiv0.86 (2)2.53 (2)3.232 (3)140 (2)
N5A—H4A···O1AA0.86 (2)2.11 (2)2.963 (2)171 (2)
N5B—H4B···O2Bi0.86 (2)2.20 (2)3.045 (2)167 (2)
N5C—H4C···N3Dv0.89 (3)2.12 (3)2.996 (2)173 (2)
N5D—H4D···N3Cv0.81 (3)2.30 (3)3.105 (3)173 (2)
N6A—H5A···N3Bvi0.80 (2)2.13 (2)2.926 (2)175.9 (19)
N6B—H5B···N3Avii0.84 (2)2.18 (2)3.020 (2)177 (2)
N6C—H5C···O2W0.93 (3)2.00 (3)2.849 (2)151 (2)
N6D—H5D···O2AAvii0.93 (3)2.22 (3)3.126 (2)167 (2)
N6A—H6A···O1Wii0.90 (2)2.55 (2)3.262 (2)137.2 (15)
N6A—H6A···O2Bviii0.90 (2)2.14 (2)2.841 (2)135.2 (17)
N6B—H6B···O1AAvii0.89 (2)2.17 (3)2.806 (2)128 (2)
N6C—H6C···O1B0.90 (2)1.97 (2)2.868 (2)174.6 (18)
N6D—H6D···N1B0.91 (2)2.18 (2)3.088 (2)172 (2)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z−1; (iii) −x+1, −y+2, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x, −y+1, −z+1; (vi) x+1, y+1, z; (vii) x−1, y−1, z; (viii) −x+2, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5157).

References

  • Aghabozorg, H., Daneshvar, S. & Nemati, A. (2008). Acta Cryst. E64, m1063–m1064. [PMC free article] [PubMed]
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cook, H. A., Klampfl, C. W. & Buchberger, W. (2005). Electrophoresis, 26, 1576–1583. [PubMed]
  • Debrus, S., Marchewka, M. K., Drozd, M. & Ratajczak, H. (2007). Opt. Mater.29, 1058–1062.
  • Marchewka, M. K. (2002). Mater. Sci. Eng. B, 95, 214–221.
  • Marchewka, M. K. & Pietraszko, A. (2003). J. Phys. Chem. Solids.64, 2169–2181.
  • Ramos Silva, M., Motyeian, E., Aghabozorg, H. & Ghadermazi, M. (2008). Acta Cryst. E64, m1173–m1174. [PMC free article] [PubMed]
  • Rima, J., Abourida, M., Xu, T., Cho, I. K. & Kyriacos, S. (2008). J. Food Compost. Anal.22, 689–693.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zhao, M. M. & Shi, P. P. (2010). Acta Cryst. E66, o1415. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography