PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2969.
Published online 2010 October 30. doi:  10.1107/S1600536810043047
PMCID: PMC3009347

2-[2-(1,3-Dioxoisoindolin-2-yl)acetamido]­acetic acid

Abstract

The title mol­ecule, C12H10N2O5, is non-planar with dihedral angles of 89.08 (7) and 83.21 (7)° between the phthalimide and acetamide mean planes, and the acetamide and acetic acid mean planes, respectively. In the crystal, symmetry-related mol­ecules are linked via N—H(...)O and O—H(...)O hydrogen bonds, forming an undulating two-dimensional network. There are also a number of weak C—H(...)O inter­actions, leading to the formation of a three-dimensional arrangement.

Related literature

For the structures and biological properties of phthalimides and various derivatives, see: Antunes et al. (1998 [triangle]); Barooah & Baruah (2007 [triangle]); Barooah et al. (2006 [triangle]); Khan et al. (2002 [triangle]); Sharma et al. (2010 [triangle]); Yunus et al. (2008 [triangle]). For standard bond lengths, see: Allen et al. (1987 [triangle]). For bond lengths and angles in the phthalimide group, see: Feeder & Jones (1996 [triangle]); Ng (1992 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2969-scheme1.jpg

Experimental

Crystal data

  • C12H10N2O5
  • M r = 262.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2969-efi1.jpg
  • a = 4.8195 (5) Å
  • b = 10.3415 (11) Å
  • c = 22.629 (2) Å
  • β = 90.17 (1)°
  • V = 1127.9 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 173 K
  • 0.34 × 0.24 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.939, T max = 1.000
  • 6788 measured reflections
  • 2731 independent reflections
  • 2533 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.094
  • S = 1.07
  • 2731 reflections
  • 180 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810043047/su2220sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043047/su2220Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge Allama Iqbal Open University, Islamabad, Pakistan, for providing research facilities.

supplementary crystallographic information

Comment

Phthalimides and its derivatives are one of the important class of organic molecules that possess diverse structural (Barooah & Baruah, 2007) and biological applications (Sharma et al., 2010). Among phthalimides derivatives, N-phthaloylglycine has been the most widely studied for its metal complexes with supramolecular structures (Barooah et al., 2006), kinetic studies for cleavage with various amines (Khan & Ismail, 2002) and heterocyclic derivatives such as oxadiazole (Antunes et al., 1998) and 1,2,4-triazole (Yunus et al., 2008). In the present investigation we report on the crystal structure of an acetamide derivative of the N-phthaloylglycine moiety.

The molecular structure of the title molecule is illustrated in Fig. 1. As a whole the molecule is non-planar and consists of three groups, namely phthalimide, acetamide and acetic acid, which are individually planar. The dihedral angle between the phthalimide (N1/C8/C5/C6/C7) and acetamide (C9/C10/N2/O3) mean planes is 89.08 (7)°, while between the acetamide (C9/C10/N2/O3) and acetic acid (C11/C12/O4/O5) mean planes the dihedral angle is 83.21 (7)°.

The phthalimide group is planar and the bond lengths and angles are within normal ranges (Ng, 1992; Feeder & Jones, 1996). The acetamide and acetic acid groups have trigonal planar geometry with the sum of the bond angles being 359.98 ° and 359.96 °, respectively. The CN bond lengths in the acetamide moiety, [C10—N2 1.3290 (14) Å and C11—N2 1.4546 (16) Å] are very close to those expected for double and single CN bonds, respectively (Allen et al., 1987). The C=O bond length [C10-O3 = 1.2399 (14) Å] is significantly longer than the C—O bond length in the acetic acid moiety [C12—O4 = 1.2086 (15) Å]. This suggests that some tautomerism of the type OC—NH and HOC=N exists in the acetamide moiety. The carbon oxygen distances in the carboxylate (COO-) group show typical double and single bond values [C12—O4 = 1.2086 (15) Å and C12—O5 = 1.3265 (14) Å, respectively].

In the crystal neighbouring and symmetry related molecules are linked via N-H···O and O-H···O hydrogen bonds to form an undulating two-dimensional network (Fig. 2 and Table 1). Together with a number of intermolecular C-H···O contacts (Table 1) these interactions lead to the formation of a three dimensional arrangement.

Experimental

The title compound was synthesized by the treatment of N-phthaloylglycyl chloride (30 mmol) with potassium thiocyanate (30 mmol) in dry acetone (50 ml). The mixture was stirred at 328 - 333 K for 1 h, followed by the addition of glycine (30 mmol) and a few drops of pyridine, and then refluxed for 6 h. After reflux, the mixture was treated with ice cold water untill a precipitate appeared, which was collected by filtration, washed with water, and recrystallized with ethanol to give colourless block-like crystals, suitable for X-ray diffraction analysis.

Refinement

The OH and NH H-atoms were located in a difference electron density map and were freely refined: N-H = 0.908 (19) Å, O-H = 0.93 (3) Å. The C-bound H-atoms were included in calculated positions and treated as riding: C-H = 0.95 and 0.99Å for CH and CH2 H-atoms, respectively, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A view of the molecular structure of the title molecule, with displacement ellipsodes drawn at the 50% probability level.
Fig. 2.
The crystal packing viewed along the c axis of the title compound, showing the N-H···O and O-H···O hydrogen bonds as cyan lines (H-atoms not involved in hydrogen bonding have been omitted for clarity).

Crystal data

C12H10N2O5F(000) = 544
Mr = 262.22Dx = 1.544 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6788 reflections
a = 4.8195 (5) Åθ = 2.7–28.3°
b = 10.3415 (11) ŵ = 0.12 mm1
c = 22.629 (2) ÅT = 173 K
β = 90.17 (1)°Block, colorless
V = 1127.9 (2) Å30.34 × 0.24 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2731 independent reflections
Radiation source: fine-focus sealed tube2533 reflections with I > 2σ(I)
graphiteRint = 0.015
ω and [var phi] scansθmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −5→6
Tmin = 0.939, Tmax = 1.000k = −6→13
6788 measured reflectionsl = −29→29

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.037P)2 + 0.579P] where P = (Fo2 + 2Fc2)/3
2731 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.42937 (19)0.17860 (9)0.07903 (4)0.0274 (3)
O20.7194 (2)0.46000 (10)0.04263 (4)0.0338 (3)
O31.11056 (19)0.36795 (9)0.23395 (4)0.0250 (3)
O40.8527 (2)0.07998 (11)0.31666 (4)0.0333 (3)
O51.05382 (19)0.04425 (9)0.22876 (4)0.0264 (3)
N11.0744 (2)0.32888 (10)0.07534 (4)0.0205 (3)
N20.8077 (2)0.25359 (10)0.18003 (4)0.0214 (3)
C11.1901 (3)0.10108 (14)−0.04587 (6)0.0285 (4)
C21.0418 (3)0.09730 (15)−0.09889 (6)0.0336 (4)
C30.8300 (3)0.18476 (15)−0.11078 (6)0.0329 (4)
C40.7551 (3)0.27995 (14)−0.06977 (6)0.0279 (4)
C50.9028 (2)0.28280 (12)−0.01754 (5)0.0223 (3)
C61.1163 (2)0.19590 (12)−0.00576 (5)0.0219 (3)
C71.2343 (2)0.22725 (12)0.05335 (5)0.0208 (3)
C80.8738 (2)0.37080 (12)0.03419 (5)0.0223 (3)
C91.1328 (2)0.39863 (11)0.12934 (5)0.0206 (3)
C101.0158 (2)0.33726 (11)0.18492 (5)0.0190 (3)
C110.6866 (2)0.19718 (13)0.23289 (6)0.0245 (3)
C120.8745 (2)0.10203 (12)0.26443 (5)0.0218 (3)
H1A1.334800.04130−0.037800.0340*
H20.743 (4)0.2331 (18)0.1435 (8)0.037 (5)*
H2A1.086900.03340−0.127500.0400*
H3A0.734300.17980−0.147400.0390*
H4A0.609700.33960−0.077500.0340*
H51.159 (4)−0.018 (2)0.2480 (8)0.043 (5)*
H9A1.056600.487200.125700.0250*
H9B1.336400.406300.133800.0250*
H11A0.512500.152400.221900.0290*
H11B0.637900.267700.260600.0290*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0269 (4)0.0280 (5)0.0271 (5)0.0052 (4)−0.0068 (4)−0.0024 (4)
O20.0349 (5)0.0362 (5)0.0302 (5)0.0138 (4)−0.0064 (4)−0.0023 (4)
O30.0277 (4)0.0293 (5)0.0180 (4)−0.0050 (4)−0.0041 (3)0.0004 (3)
O40.0375 (5)0.0401 (6)0.0224 (4)0.0032 (4)0.0029 (4)0.0082 (4)
O50.0292 (5)0.0281 (5)0.0218 (4)0.0061 (4)−0.0019 (3)0.0023 (4)
N10.0219 (5)0.0227 (5)0.0168 (4)0.0014 (4)−0.0018 (4)−0.0003 (4)
N20.0225 (5)0.0223 (5)0.0195 (5)−0.0013 (4)−0.0043 (4)0.0029 (4)
C10.0313 (6)0.0291 (7)0.0251 (6)−0.0009 (5)0.0007 (5)−0.0051 (5)
C20.0411 (7)0.0366 (7)0.0232 (6)−0.0061 (6)0.0011 (5)−0.0094 (5)
C30.0370 (7)0.0434 (8)0.0183 (6)−0.0096 (6)−0.0047 (5)−0.0007 (5)
C40.0281 (6)0.0352 (7)0.0205 (6)−0.0041 (5)−0.0039 (5)0.0045 (5)
C50.0235 (5)0.0254 (6)0.0181 (5)−0.0028 (5)0.0002 (4)0.0020 (4)
C60.0227 (5)0.0243 (6)0.0187 (5)−0.0036 (4)−0.0009 (4)0.0002 (4)
C70.0219 (5)0.0209 (5)0.0197 (5)−0.0021 (4)0.0001 (4)−0.0003 (4)
C80.0225 (5)0.0260 (6)0.0185 (5)0.0000 (4)−0.0014 (4)0.0033 (4)
C90.0235 (5)0.0210 (5)0.0173 (5)−0.0016 (4)−0.0013 (4)−0.0008 (4)
C100.0201 (5)0.0186 (5)0.0182 (5)0.0028 (4)−0.0020 (4)0.0003 (4)
C110.0200 (5)0.0275 (6)0.0259 (6)−0.0005 (5)0.0012 (4)0.0054 (5)
C120.0207 (5)0.0219 (6)0.0228 (6)−0.0051 (4)−0.0021 (4)0.0021 (4)

Geometric parameters (Å, °)

O1—C71.2130 (14)C3—C41.401 (2)
O2—C81.2008 (15)C4—C51.3782 (18)
O3—C101.2399 (14)C5—C81.4896 (17)
O4—C121.2086 (15)C5—C61.3913 (16)
O5—C121.3265 (14)C6—C71.4877 (16)
O5—H50.93 (2)C9—C101.5188 (16)
N1—C81.4087 (14)C11—C121.5146 (17)
N1—C91.4459 (15)C1—H1A0.9500
N1—C71.3959 (15)C2—H2A0.9500
N2—C101.3290 (14)C3—H3A0.9500
N2—C111.4546 (16)C4—H4A0.9500
N2—H20.908 (18)C9—H9A0.9900
C1—C21.395 (2)C9—H9B0.9900
C1—C61.3834 (18)C11—H11A0.9900
C2—C31.390 (2)C11—H11B0.9900
C12—O5—H5112.5 (11)O3—C10—N2121.14 (10)
C7—N1—C9124.79 (9)O3—C10—C9119.83 (10)
C8—N1—C9122.45 (10)N2—C11—C12114.03 (9)
C7—N1—C8112.00 (9)O4—C12—O5124.66 (11)
C10—N2—C11119.81 (10)O4—C12—C11121.99 (11)
C10—N2—H2119.0 (12)O5—C12—C11113.31 (10)
C11—N2—H2121.2 (12)C2—C1—H1A121.00
C2—C1—C6116.87 (13)C6—C1—H1A122.00
C1—C2—C3121.49 (13)C1—C2—H2A119.00
C2—C3—C4121.31 (13)C3—C2—H2A119.00
C3—C4—C5116.72 (13)C2—C3—H3A119.00
C4—C5—C8129.61 (11)C4—C3—H3A119.00
C4—C5—C6122.03 (11)C3—C4—H4A122.00
C6—C5—C8108.37 (9)C5—C4—H4A122.00
C1—C6—C5121.57 (11)N1—C9—H9A109.00
C1—C6—C7130.24 (11)N1—C9—H9B108.00
C5—C6—C7108.18 (10)C10—C9—H9A108.00
N1—C7—C6105.94 (9)C10—C9—H9B109.00
O1—C7—C6129.35 (11)H9A—C9—H9B108.00
O1—C7—N1124.71 (11)N2—C11—H11A109.00
O2—C8—N1123.76 (11)N2—C11—H11B109.00
O2—C8—C5130.84 (10)C12—C11—H11A109.00
N1—C8—C5105.41 (9)C12—C11—H11B109.00
N1—C9—C10114.81 (9)H11A—C11—H11B108.00
N2—C10—C9119.02 (10)
C9—N1—C7—C6−173.65 (10)C3—C4—C5—C8−179.94 (13)
C7—N1—C8—O2−177.27 (11)C3—C4—C5—C60.06 (19)
C9—N1—C8—O2−6.78 (17)C4—C5—C6—C1−0.53 (19)
C7—N1—C8—C52.75 (12)C6—C5—C8—N1−0.90 (12)
C8—N1—C7—O1176.11 (11)C8—C5—C6—C7−1.12 (12)
C9—N1—C7—O15.88 (18)C4—C5—C6—C7178.88 (11)
C8—N1—C7—C6−3.42 (12)C8—C5—C6—C1179.47 (11)
C8—N1—C9—C10104.76 (12)C6—C5—C8—O2179.13 (12)
C9—N1—C8—C5173.24 (9)C4—C5—C8—O2−0.9 (2)
C7—N1—C9—C10−85.99 (12)C4—C5—C8—N1179.11 (12)
C11—N2—C10—O30.39 (17)C1—C6—C7—O12.6 (2)
C11—N2—C10—C9−177.90 (10)C5—C6—C7—O1−176.76 (12)
C10—N2—C11—C12−70.18 (14)C5—C6—C7—N12.74 (12)
C2—C1—C6—C7−178.78 (12)C1—C6—C7—N1−177.93 (12)
C2—C1—C6—C50.48 (19)N1—C9—C10—O3161.21 (10)
C6—C1—C2—C30.0 (2)N1—C9—C10—N2−20.48 (14)
C1—C2—C3—C4−0.5 (2)N2—C11—C12—O4154.71 (12)
C2—C3—C4—C50.4 (2)N2—C11—C12—O5−27.42 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.908 (18)2.172 (19)3.0208 (13)155.3 (17)
O5—H5···O3ii0.93 (2)1.67 (2)2.5777 (13)165.4 (17)
C2—H2A···O5iii0.952.523.3142 (17)141
C9—H9A···O4iv0.992.563.2407 (15)126
C9—H9B···O4v0.992.593.3378 (15)132
C11—H11A···O5i0.992.483.4364 (14)162

Symmetry codes: (i) x−1, y, z; (ii) −x+5/2, y−1/2, −z+1/2; (iii) −x+2, −y, −z; (iv) −x+3/2, y+1/2, −z+1/2; (v) −x+5/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2220).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Antunes, R., Batista, H., Srivastava, R. M., Thomas, G. & Araujo, C. C. (1998). Bioorg. Med. Chem. Lett.8, 3071–3076. [PubMed]
  • Barooah, N. & Baruah, J. B. (2007). Mini-Rev. Org. Chem.4, 292–309.
  • Barooah, N., Sarma, R. J., Batsanov, A. S. & Baruah, J. B. (2006). J. Mol. Struct.791, 122–130.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Feeder, N. & Jones, W. (1996). Acta Cryst. C52, 913–919.
  • Khan, M. N. & Ismail, N. H. (2002). J. Chem. Res.12, 593–595.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Ng, S. W. (1992). Acta Cryst. C48, 1694–1695.
  • Sharma, U., Kumar, P., Kumar, N. & Singh, B. (2010). Mini Rev. Med. Chem.10, 678–704. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Yunus, U., Tahir, M. K., Bhatti, M. H., Yousaf, N. & Helliwell, M. (2008). Acta Cryst. E64, o476–o477. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography