PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2763.
Published online 2010 October 9. doi:  10.1107/S1600536810039267
PMCID: PMC3009346

N-Phenyl­cyclo­hexa­necarboxamide

Abstract

In the title compound, C13H17NO, the cyclo­hexane ring adopts a chair conformation and the amide C(=O)—N moiety is almost coplanar with the phenyl ring [C—N—C—O = 4.1 (2)°]. In the crystal, mol­ecules are linked to form a C(4) infinite [001] chain via N—H(...)O hydrogen bonds, unlike the cyclic motif seen in related structures.

Related literature

For hydrogen-bonding motifs in amides, see: Taylor et al. (1984 [triangle]); Leiserowitz & Schmidt (1969 [triangle]). For related structures, see: Lemmerer & Michael (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2763-scheme1.jpg

Experimental

Crystal data

  • C13H17NO
  • M r = 203.28
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2763-efi1.jpg
  • a = 9.943 (2) Å
  • b = 11.839 (2) Å
  • c = 9.6514 (19) Å
  • V = 1136.1 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 113 K
  • 0.24 × 0.18 × 0.10 mm

Data collection

  • Rigaku Saturn CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005 [triangle]) T min = 0.982, T max = 0.993
  • 8926 measured reflections
  • 1431 independent reflections
  • 1308 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.080
  • S = 1.09
  • 1431 reflections
  • 141 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810039267/hb5665sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039267/hb5665Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This paper was supported by the Hebei Province Health Bureau (grant No. 20090176), the Ministry of Science and Technology of the People’s Republic of China Inter­national Cooperation Project (grant No. 2008DFR10530) and the Science and Technology Support Program of Hebei Province Science and Technology Department (grant No. 08243531D).

supplementary crystallographic information

Comment

The amides are an important H-bonding supramolecular synthon (Taylor et al., 1984; Leiserowitz & Schmidt, 1969), and we herein report the crystal structure of the title compound (I).

In the crystal structure of the title compound, Fig. 1, the cyclohexane group adopts a chair conformation [torsion angles: C1/C2/C3/C4 54.67 (19)°, C2/C3/C4/C5 - 55.3 (2)°]. The amide C(=O)—N moiety is almost coplanar with the phenyl ring [torsion angles: C8/N1/C7/O1 4.1 (2)°, C8/N1/C7/C6 - 175.38 (13)°]. Molecules are linked to form an infinite chain down the c axis via N—H···O hydrogen bonds (Fig. 2 and Table 1), being different from the reported secondary graph set R64(16) in 1-phenylcylcopentane- carboxamide and 1-(2-bromphenyl)cyclopentanecarboxamide (Lemmerer & Michael, 2008).

Experimental

The title compound was prepared from cyclohexoyl chloride and aniline. Colourless blocks of (I) were grown out via recrystallization from ethanol.

Refinement

Anomalous dispersion was negligible and Friedel pairs were merged before refinement. The amide H atom was located in a difference Fourier map and refined freely. The other H atoms were positioned geometrically and allowed to ride on their parent atoms [C—H = 1.00 (aliphic CH), 0.95(aromatic CH) or 0.99Å (CH2), and Uiso(H) = 1.2 Ueq(C)]

Figures

Fig. 1.
The molecule of (I) showing displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
The infinite chain formed via N—H···O down the c axis.

Crystal data

C13H17NOF(000) = 440
Mr = 203.28Dx = 1.188 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 3664 reflections
a = 9.943 (2) Åθ = 2.9–27.8°
b = 11.839 (2) ŵ = 0.08 mm1
c = 9.6514 (19) ÅT = 113 K
V = 1136.1 (4) Å3Block, colorless
Z = 40.24 × 0.18 × 0.10 mm

Data collection

Rigaku Saturn CCD diffractometer1431 independent reflections
Radiation source: rotating anode1308 reflections with I > 2σ(I)
multilayerRint = 0.038
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 3.4°
ω and [var phi] scansh = −13→11
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)k = −15→13
Tmin = 0.982, Tmax = 0.993l = −12→12
8926 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080w = 1/[σ2(Fo2) + (0.0508P)2 + 0.0154P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1431 reflectionsΔρmax = 0.14 e Å3
141 parametersΔρmin = −0.12 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.174 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.22562 (12)0.24856 (10)0.38081 (13)0.0311 (3)
N10.17317 (13)0.25866 (10)0.15287 (15)0.0201 (3)
C10.48835 (17)0.24779 (12)0.16381 (19)0.0254 (4)
H1A0.45120.29180.08540.031*
H1B0.51330.30140.23820.031*
C20.61342 (18)0.18387 (14)0.11590 (18)0.0282 (4)
H2A0.59040.13670.03460.034*
H2B0.68320.23870.08710.034*
C30.66924 (17)0.10871 (15)0.2307 (2)0.0344 (4)
H3A0.70320.15660.30710.041*
H3B0.74570.06420.19410.041*
C40.56207 (18)0.02845 (14)0.2867 (2)0.0334 (4)
H4A0.5996−0.01530.36510.040*
H4B0.5356−0.02550.21330.040*
C50.43777 (16)0.09411 (13)0.33568 (18)0.0259 (4)
H5A0.36810.04040.36790.031*
H5B0.46250.14340.41460.031*
C60.38120 (15)0.16622 (12)0.21778 (17)0.0218 (3)
H60.35750.11400.14010.026*
C70.25333 (16)0.22777 (12)0.25968 (16)0.0207 (3)
C80.05357 (14)0.32340 (12)0.16232 (17)0.0193 (3)
C9−0.03152 (16)0.31722 (13)0.27635 (18)0.0253 (4)
H9−0.01100.26810.35130.030*
C10−0.14675 (18)0.38349 (15)0.2797 (2)0.0325 (4)
H10−0.20450.37980.35800.039*
C11−0.17880 (18)0.45468 (14)0.1711 (2)0.0340 (4)
H11−0.25740.50020.17500.041*
C12−0.09518 (18)0.45894 (13)0.0565 (2)0.0300 (4)
H12−0.11740.5067−0.01930.036*
C130.02102 (16)0.39388 (13)0.05141 (18)0.0240 (3)
H130.07820.3974−0.02740.029*
H10.204 (2)0.2485 (15)0.072 (3)0.035 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0268 (6)0.0522 (7)0.0143 (6)0.0088 (5)−0.0021 (5)−0.0028 (5)
N10.0190 (7)0.0273 (6)0.0138 (6)0.0021 (5)0.0007 (5)−0.0007 (5)
C10.0241 (8)0.0280 (8)0.0241 (8)0.0058 (6)0.0028 (7)0.0048 (7)
C20.0238 (9)0.0310 (8)0.0299 (9)0.0038 (6)0.0055 (7)0.0028 (7)
C30.0240 (9)0.0374 (9)0.0418 (11)0.0083 (7)0.0003 (8)0.0062 (8)
C40.0290 (9)0.0291 (8)0.0420 (10)0.0068 (7)−0.0009 (8)0.0094 (8)
C50.0234 (8)0.0268 (7)0.0275 (8)0.0017 (6)−0.0010 (7)0.0065 (7)
C60.0189 (7)0.0242 (7)0.0222 (7)0.0028 (6)−0.0003 (6)0.0005 (6)
C70.0194 (7)0.0238 (7)0.0188 (7)−0.0006 (6)−0.0015 (6)−0.0007 (6)
C80.0184 (7)0.0198 (6)0.0196 (7)−0.0009 (5)−0.0043 (6)−0.0032 (6)
C90.0230 (8)0.0303 (8)0.0226 (8)0.0025 (6)−0.0014 (6)−0.0008 (7)
C100.0226 (8)0.0405 (9)0.0345 (9)0.0044 (7)0.0008 (7)−0.0063 (8)
C110.0249 (9)0.0279 (8)0.0493 (11)0.0073 (6)−0.0079 (8)−0.0078 (8)
C120.0317 (10)0.0219 (8)0.0366 (9)−0.0007 (6)−0.0142 (8)0.0017 (7)
C130.0232 (8)0.0252 (7)0.0236 (8)−0.0040 (6)−0.0063 (7)0.0014 (7)

Geometric parameters (Å, °)

O1—C71.226 (2)C5—C61.530 (2)
N1—C71.353 (2)C5—H5A0.9900
N1—C81.4176 (19)C5—H5B0.9900
N1—H10.85 (3)C6—C71.520 (2)
C1—C21.527 (2)C6—H61.0000
C1—C61.529 (2)C8—C91.390 (2)
C1—H1A0.9900C8—C131.395 (2)
C1—H1B0.9900C9—C101.389 (2)
C2—C31.526 (2)C9—H90.9500
C2—H2A0.9900C10—C111.383 (3)
C2—H2B0.9900C10—H100.9500
C3—C41.527 (3)C11—C121.385 (3)
C3—H3A0.9900C11—H110.9500
C3—H3B0.9900C12—C131.390 (2)
C4—C51.535 (2)C12—H120.9500
C4—H4A0.9900C13—H130.9500
C4—H4B0.9900
C7—N1—C8126.23 (15)C6—C5—H5B109.6
C7—N1—H1116.4 (15)C4—C5—H5B109.6
C8—N1—H1116.4 (14)H5A—C5—H5B108.1
C2—C1—C6110.94 (12)C7—C6—C1111.75 (12)
C2—C1—H1A109.5C7—C6—C5112.16 (13)
C6—C1—H1A109.5C1—C6—C5110.46 (13)
C2—C1—H1B109.5C7—C6—H6107.4
C6—C1—H1B109.5C1—C6—H6107.4
H1A—C1—H1B108.0C5—C6—H6107.4
C3—C2—C1111.43 (14)O1—C7—N1122.67 (15)
C3—C2—H2A109.3O1—C7—C6122.53 (14)
C1—C2—H2A109.3N1—C7—C6114.80 (14)
C3—C2—H2B109.3C9—C8—C13119.85 (14)
C1—C2—H2B109.3C9—C8—N1122.21 (14)
H2A—C2—H2B108.0C13—C8—N1117.94 (14)
C2—C3—C4111.49 (14)C10—C9—C8119.40 (15)
C2—C3—H3A109.3C10—C9—H9120.3
C4—C3—H3A109.3C8—C9—H9120.3
C2—C3—H3B109.3C11—C10—C9121.10 (18)
C4—C3—H3B109.3C11—C10—H10119.4
H3A—C3—H3B108.0C9—C10—H10119.4
C3—C4—C5110.85 (13)C10—C11—C12119.33 (16)
C3—C4—H4A109.5C10—C11—H11120.3
C5—C4—H4A109.5C12—C11—H11120.3
C3—C4—H4B109.5C11—C12—C13120.47 (17)
C5—C4—H4B109.5C11—C12—H12119.8
H4A—C4—H4B108.1C13—C12—H12119.8
C6—C5—C4110.48 (14)C12—C13—C8119.83 (16)
C6—C5—H5A109.6C12—C13—H13120.1
C4—C5—H5A109.6C8—C13—H13120.1
C6—C1—C2—C3−55.5 (2)C1—C6—C7—N178.01 (17)
C1—C2—C3—C454.7 (2)C5—C6—C7—N1−157.32 (13)
C2—C3—C4—C5−55.3 (2)C7—N1—C8—C9−32.8 (2)
C3—C4—C5—C656.9 (2)C7—N1—C8—C13148.20 (15)
C2—C1—C6—C7−177.32 (14)C13—C8—C9—C10−1.4 (2)
C2—C1—C6—C557.07 (19)N1—C8—C9—C10179.54 (15)
C4—C5—C6—C7176.87 (13)C8—C9—C10—C110.6 (2)
C4—C5—C6—C1−57.75 (17)C9—C10—C11—C120.7 (3)
C8—N1—C7—O14.1 (2)C10—C11—C12—C13−1.1 (2)
C8—N1—C7—C6−175.38 (13)C11—C12—C13—C80.2 (2)
C1—C6—C7—O1−101.43 (19)C9—C8—C13—C121.0 (2)
C5—C6—C7—O123.2 (2)N1—C8—C13—C12−179.90 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.85 (3)1.98 (3)2.8145 (19)171.7 (18)

Symmetry codes: (i) −x+1/2, y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5665).

References

  • Leiserowitz, L. & Schmidt, G. M. (1969). J. Chem. Soc. A, pp. 2372–2382.
  • Lemmerer, A. & Michael, J. P. (2008). CrystEngComm, 10, 95–102.
  • Rigaku/MSC (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Taylor, R., Kennard, O. & Versichel, W. (1984). Acta Cryst. B40, 280–288.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography