PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2906.
Published online 2010 October 23. doi:  10.1107/S1600536810042005
PMCID: PMC3009337

4-Bromo­methyl-6-meth­oxy-2H-chromen-2-one

Abstract

The structure of the title coumarin derivative, C11H9BrO3, is stabilized by weak inter­molecular C—H(...)O hydrogen bonds.

Related literature

For the properties of coumarins, see: Kulkarni et al. (2006 [triangle]); Fylaktakidou et al. (2004 [triangle]); Neyts et al. (2009 [triangle]); Kempen et al. (2003 [triangle]). For structural analysis of coumarins, see: Gnanaguru et al. (1985 [triangle]); Munshi & Guru Row (2005 [triangle]); Gavuzzo et al. (1974 [triangle]); Moorthy et al. (2003 [triangle]); Katerinopoulos (2004 [triangle]). For Br-containing coumarins, see: Gaultier & Hauw (1965 [triangle]); Kokila et al. (1996 [triangle]); Vasudevan et al. (1991 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2906-scheme1.jpg

Experimental

Crystal data

  • C11H9BrO3
  • M r = 269.09
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2906-efi1.jpg
  • a = 4.3573 (3) Å
  • b = 9.2859 (6) Å
  • c = 25.2677 (17) Å
  • β = 91.927 (3)°
  • V = 1021.79 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.01 mm−1
  • T = 293 K
  • 0.25 × 0.15 × 0.1 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.434, T max = 0.501
  • 9950 measured reflections
  • 2128 independent reflections
  • 1501 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.101
  • S = 0.96
  • 2128 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.93 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT (Bruker, 2004 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810042005/bh2314sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042005/bh2314Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RG thanks the MVJ College of Engineering, Bangalore-67 (VTU Research Center) for providing research facilities. The authors also thank the SAIF, IIT-Madras, Channai, for the data collection.

supplementary crystallographic information

Comment

Coumarins are a class of naturally occurring oxygen heterocycles which have been found to exhibit wide ranging biological activities (Kulkarni et al., 2006; Fylaktakidou et al., 2004; Neyts et al., 2009) through its innumerable derivatives. Structural studies on coumarins have been focused on their solid state photochemical dimerization (Gnanaguru et al., 1985), hydrogen bonding (Munshi et al., 2005), mode of packing (Gavuzzo et al., 1974), molecular self assembling (Moorthy et al., 2003) and photophysical properties (Katerinopoulos et al., 2004). Introduction of bromine has resulted in formation of hydrates, intermolecular hydrogen bonds, and eclipsed conformation, as observed in 3-bromocoumarin (Gaultier et al., 1965), 6-bromo-3-acetylcoumarin (Kokila et al., 1996), and 3-bromoacetylcoumarin (Vasudevan et al., 1991), respectively. 3-Bromophenyl-6-acetoxymethyl-coumarin-3-carboxylates have been found to exhibit potential anticancer and antitumour activity (Kempen et al., 2003).

The title compound is cyclic, planar and aromatic in nature due to the continuous delocalization of electrons over the coumarin rings system. There is a significant deviation from trigonality in bond angle at O1—C1—C2 [117.0 (3)°], due to the electronic repulsion of atom O2 which is bonded to C1. This is also reflected at C9—C4—C5 [117.9 (3)°] and C9—C4—C3 [117.6 (3)°] but these are due to fused benzene and α pyrone rings. Another significant deviation in bond angle is observed at C6—O3—C11 [118.0 (3)°] due to the repulsion between lone pair electrons of atom O3 with valence electrons of C6—O3 and O3—C11 bonds.

Experimental

To a mixture of equimolar quantity of 4-methoxy phenol (0.1 mol) and 4-bromoethylacetoacetate (0.1 mol) was added drop wise sulfuric acid (30 ml) with stirring and maintaining the temperature between 0-5 °C. The reaction mixture was allowed to stand in ice chest overnight and deep red coloured solution was poured into the stream of crushed ice. Solid separated was filtered and washed with water and then with cold ethanol so as to get a colourless compound. Finally, it is recrystallized from acetic acid.

Refinement

All the H atoms were positioned geometrically and refined using a riding model with bond lengths 0.97 (methylene), 0.96 (methyl) or 0.93 Å (aromatic). Isotropic displacement parameters were calculated as Uĩso~(H) = 1.5U~eq~(C) for methyl group C11 and Uĩso~(H) = 1.2U~eq~(C) for all other H atoms.

Figures

Fig. 1.
ORTEP diagram of the title molecule with 50% probability displacement ellipsoids for non-H atoms.

Crystal data

C11H9BrO3F(000) = 536
Mr = 269.09Dx = 1.749 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3217 reflections
a = 4.3573 (3) Åθ = 2.3–25.4°
b = 9.2859 (6) ŵ = 4.01 mm1
c = 25.2677 (17) ÅT = 293 K
β = 91.927 (3)°Needle, colourless
V = 1021.79 (12) Å30.25 × 0.15 × 0.1 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer2128 independent reflections
Radiation source: fine-focus sealed tube1501 reflections with I > 2σ(I)
graphiteRint = 0.037
ω and [var phi] scansθmax = 26.6°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −5→3
Tmin = 0.434, Tmax = 0.501k = −11→11
9950 measured reflectionsl = −31→31

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 0.96w = 1/[σ2(Fo2) + (0.0467P)2 + 1.203P] where P = (Fo2 + 2Fc2)/3
2128 reflections(Δ/σ)max = 0.008
137 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = −0.26 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3658 (8)0.2636 (4)0.73840 (14)0.0406 (9)
C20.4641 (8)0.1339 (4)0.71330 (13)0.0375 (8)
H20.39440.04620.72600.045*
C30.6518 (7)0.1332 (4)0.67239 (13)0.0321 (7)
C40.7577 (7)0.2706 (4)0.65171 (12)0.0318 (7)
C50.9489 (7)0.2851 (4)0.60828 (13)0.0348 (8)
H51.01390.20350.59050.042*
C61.0401 (7)0.4188 (4)0.59198 (13)0.0378 (9)
C70.9456 (8)0.5407 (4)0.61872 (14)0.0429 (9)
H71.01210.63110.60810.051*
C80.7556 (8)0.5293 (4)0.66048 (14)0.0401 (9)
H80.68890.61130.67780.048*
C90.6642 (7)0.3941 (4)0.67652 (13)0.0345 (8)
C100.7530 (9)−0.0074 (4)0.65024 (14)0.0421 (9)
H10A0.7086−0.08370.67510.050*
H10B0.9733−0.00520.64600.050*
C111.2815 (9)0.3270 (5)0.51587 (15)0.0535 (11)
H11A1.40050.25540.53470.080*
H11B1.39390.36120.48630.080*
H11C1.09080.28560.50330.080*
O10.4744 (5)0.3905 (3)0.71899 (9)0.0397 (6)
O20.1939 (7)0.2719 (3)0.77495 (11)0.0569 (7)
O31.2213 (6)0.4438 (3)0.55030 (10)0.0500 (7)
Br10.54925 (10)−0.04981 (5)0.582134 (17)0.0612 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0437 (19)0.039 (2)0.039 (2)−0.0003 (18)0.0059 (16)−0.0004 (17)
C20.0442 (19)0.029 (2)0.0390 (19)−0.0025 (16)0.0024 (16)0.0004 (16)
C30.0345 (17)0.027 (2)0.0344 (18)0.0024 (15)0.0010 (14)−0.0003 (14)
C40.0310 (16)0.034 (2)0.0301 (17)0.0032 (15)−0.0022 (13)0.0012 (15)
C50.0338 (17)0.036 (2)0.0350 (18)0.0037 (16)0.0031 (14)−0.0014 (16)
C60.0371 (18)0.042 (2)0.0343 (19)−0.0030 (16)0.0050 (15)0.0044 (15)
C70.051 (2)0.030 (2)0.048 (2)−0.0055 (18)0.0027 (17)0.0076 (17)
C80.050 (2)0.029 (2)0.042 (2)0.0018 (17)0.0008 (16)−0.0045 (16)
C90.0335 (17)0.037 (2)0.0333 (18)−0.0008 (15)0.0020 (14)−0.0007 (15)
C100.048 (2)0.032 (2)0.046 (2)0.0050 (17)0.0039 (17)0.0013 (17)
C110.063 (3)0.053 (3)0.045 (2)0.000 (2)0.0162 (19)0.002 (2)
O10.0483 (14)0.0339 (15)0.0376 (13)0.0013 (12)0.0117 (11)−0.0024 (11)
O20.0759 (19)0.0461 (18)0.0508 (16)0.0039 (15)0.0305 (15)−0.0005 (13)
O30.0618 (16)0.0435 (17)0.0460 (15)−0.0072 (13)0.0208 (13)0.0030 (13)
Br10.0732 (3)0.0518 (3)0.0587 (3)0.0043 (2)0.0017 (2)−0.0214 (2)

Geometric parameters (Å, °)

C1—O21.211 (4)C7—C81.367 (5)
C1—O11.367 (4)C7—H70.9300
C1—C21.434 (5)C8—C91.382 (5)
C2—C31.340 (5)C8—H80.9300
C2—H20.9300C9—O11.377 (4)
C3—C41.459 (5)C10—Br11.950 (4)
C3—C101.493 (5)C10—H10A0.9700
C4—C91.375 (5)C10—H10B0.9700
C4—C51.406 (5)C11—O31.420 (5)
C5—C61.371 (5)C11—H11A0.9600
C5—H50.9300C11—H11B0.9600
C6—O31.357 (4)C11—H11C0.9600
C6—C71.388 (5)
O2—C1—O1116.7 (3)C7—C8—C9119.0 (3)
O2—C1—C2126.3 (4)C7—C8—H8120.5
O1—C1—C2117.0 (3)C9—C8—H8120.5
C3—C2—C1123.0 (3)C4—C9—C8122.1 (3)
C3—C2—H2118.5C4—C9—O1122.0 (3)
C1—C2—H2118.5C8—C9—O1115.9 (3)
C2—C3—C4118.7 (3)C3—C10—Br1112.1 (2)
C2—C3—C10119.3 (3)C3—C10—H10A109.2
C4—C3—C10122.0 (3)Br1—C10—H10A109.2
C9—C4—C5117.9 (3)C3—C10—H10B109.2
C9—C4—C3117.6 (3)Br1—C10—H10B109.2
C5—C4—C3124.5 (3)H10A—C10—H10B107.9
C6—C5—C4120.4 (3)O3—C11—H11A109.5
C6—C5—H5119.8O3—C11—H11B109.5
C4—C5—H5119.8H11A—C11—H11B109.5
O3—C6—C5124.7 (3)O3—C11—H11C109.5
O3—C6—C7115.4 (3)H11A—C11—H11C109.5
C5—C6—C7119.9 (3)H11B—C11—H11C109.5
C8—C7—C6120.7 (3)C1—O1—C9121.6 (3)
C8—C7—H7119.7C6—O3—C11118.0 (3)
C6—C7—H7119.7
O2—C1—C2—C3179.0 (3)C5—C4—C9—C8−0.9 (5)
O1—C1—C2—C3−0.5 (5)C3—C4—C9—C8179.0 (3)
C1—C2—C3—C4−1.0 (5)C5—C4—C9—O1179.3 (3)
C1—C2—C3—C10177.4 (3)C3—C4—C9—O1−0.8 (4)
C2—C3—C4—C91.6 (4)C7—C8—C9—C4−0.2 (5)
C10—C3—C4—C9−176.7 (3)C7—C8—C9—O1179.6 (3)
C2—C3—C4—C5−178.5 (3)C2—C3—C10—Br1106.3 (3)
C10—C3—C4—C53.2 (5)C4—C3—C10—Br1−75.4 (3)
C9—C4—C5—C60.7 (5)O2—C1—O1—C9−178.1 (3)
C3—C4—C5—C6−179.2 (3)C2—C1—O1—C91.4 (5)
C4—C5—C6—O3−179.3 (3)C4—C9—O1—C1−0.8 (5)
C4—C5—C6—C70.5 (5)C8—C9—O1—C1179.4 (3)
O3—C6—C7—C8178.2 (3)C5—C6—O3—C1110.6 (5)
C5—C6—C7—C8−1.6 (5)C7—C6—O3—C11−169.2 (3)
C6—C7—C8—C91.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.603.451 (4)152
C2—H2···O2i0.932.583.446 (5)155
C10—H10A···O2i0.972.573.437 (5)148
C8—H8···O2ii0.932.563.433 (5)156
C10—H10A···O1iii0.972.983.601 (4)122

Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1/2, y+1/2, −z+3/2; (iii) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2314).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2004). Curr. Pharm. Des.10, 3813–3833. [PubMed]
  • Gaultier, J. & Hauw, C. (1965). Acta Cryst.19, 927–933.
  • Gavuzzo, E., Mazza, F. & Giglio, E. (1974). Acta Cryst. B30, 1351–1357.
  • Gnanaguru, K., Ramasubbu, N., Venkatesan, K. & Ramamurthy, V. (1985). J. Org. Chem.50, 2337–2346.
  • Katerinopoulos, H. E. (2004). Curr. Pharm. Des.10, 3835–3852. [PubMed]
  • Kempen, I., Papapostolou, D., Thierry, N., Pochet, L., Counerotte, S., Masereel, B., Foidart, J.-M., Reboud-Ravaux, M., Noel, A. & Pirotte, B. (2003). Br. J. Cancer, 88, 1111–1118. [PMC free article] [PubMed]
  • Kokila, M. K., Puttaraja,, Kulkarni, M. V. & Shivaprakash, N. C. (1996). Acta Cryst. C52, 2078–2081.
  • Kulkarni, M. V., Kulkarni, G. M., Lin, C.-H. & Sun, C.-M. (2006). Curr. Med. Chem.13, 2795–2818. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Moorthy, J. N., Venkatakrishnan, P. & Singh, A. (2003). CrystEngComm, 5, 507–513.
  • Munshi, P. & Guru Row, T. N. (2005). J. Phys. Chem. A, 109, 659–672. [PubMed]
  • Neyts, J., De Clercq, E., Singha, R., Chang, Y. H., Das, A. R., Chakraborty, S. K., Hong, S. C., Tsay, S.-C., Hsu, M.-H. & Hwu, J. R. (2009). J. Med. Chem.52, 1486–1490. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vasudevan, K. T., Puttaraja, & Kulkarni, M. V. (1991). Acta Cryst. C47, 775–777.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography