PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2769–o2770.
Published online 2010 October 9. doi:  10.1107/S1600536810039231
PMCID: PMC3009336

9-(4-Fluoro­phen­oxy­carbon­yl)-10-methyl­acridinium trifluoro­methane­sulfonate

Abstract

In the crystal structure of the title compound, C21H15FNO2 +·CF3SO3 , the cations form inversion dimers through C—H(...)O, C—F(...)π and π–π inter­actions. These dimers are further linked by π–π inter­actions. The cations and anions are connected through C—H(...)O, C—F(...)π and S—O(...)π inter­actions. The acridine and benzene ring systems are oriented at a dihedral angle of 74.1 (1)°. The carboxyl­ate group is twisted at an angle of 4.4 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel or inclined at an angle of 55.4 (1)° in the crystal structure.

Related literature

For general background to the chemiluminogenic properties of 9-phen­oxy­carbonyl-10-methyl­acridinium trifluoro­methane­sulfonates, see: Brown et al. (2009 [triangle]); King et al. (2007 [triangle]); Rak et al. (1999 [triangle]); Roda et al. (2003 [triangle]); Zomer & Jacquemijns (2001 [triangle]). For related structures, see: Sikorski et al. (2005 [triangle]); Trzybiński et al. (2010 [triangle]). For inter­molecular inter­actions, see: Bianchi et al. (2004 [triangle]); Dorn et al. (2005 [triangle]); Hunter et al. (2001 [triangle]); Novoa et al. (2006 [triangle]). For the synthesis, see: Sato (1996 [triangle]); Sikorski et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2769-scheme1.jpg

Experimental

Crystal data

  • C21H15FNO2 +·CF3SO3
  • M r = 481.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2769-efi8.jpg
  • a = 20.854 (3) Å
  • b = 7.8092 (12) Å
  • c = 25.690 (4) Å
  • β = 100.893 (15)°
  • V = 4108.2 (11) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 295 K
  • 0.38 × 0.29 × 0.05 mm

Data collection

  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008 [triangle]) T min = 0.676, T max = 0.985
  • 15588 measured reflections
  • 3634 independent reflections
  • 1978 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.117
  • S = 0.91
  • 3634 reflections
  • 299 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)
Table 2
C—F(...)π and S—O(...)π inter­actions (Å,°)
Table 3
π–π inter­actions (Å,°)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810039231/ng5037sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039231/ng5037Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was financed by the State Funds for Scientific Research (grant No. DS/8820-4-0087-0).

supplementary crystallographic information

Comment

9-(Phenoxycarbonyl)-10-methylacridinium salts have long been known as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels widely used in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Zomer & Jacquemijns, 2001; Roda et al., 2003; King et al., 2007; Brown et al., 2009). The cations of these salts are oxidized with hydrogen peroxide in alkaline media, which produces light. It has been found that this process is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Rak et al., 1999). The efficiency of chemiluminescence - crucial for analytical applications - is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). In the search for efficient chemiluminogens we undertook investigations on 9-(phenoxycarbonyl)-10-methylacridinium derivatives substituted in the phenyl fragment. Here we present the structure of 9-(4-fluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2005; Trzybiński et al., 2010). With respective average deviations from planarity of 0.0288 (3) Å and 0.0081 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 74.1 (1)°. The carboxyl group is twisted at an angle of 4.4 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle 0.0 (1)°) or inclined at an angle of 55.4 (1)° in the lattice.

In the crystal structure, the inversely oriented cations form dimers through multidirectional C-H···O (Table 1, Fig. 2), C-F···π (Table 2, Fig. 2) and π-π (Table 3, Fig. 2) interactions. These dimers are further linked by π-π (Table 3, Fig. 2) interactions. The adjacent cations (dimers) and anions are connected through C-H···O (Table 1, Fig. 2), C-F···π (Table 2, Fig. 2) and S-O···π (Table 2, Fig. 2) interactions. The C-H···O interactions are of the hydrogen bond type (Bianchi et al. 2004; Novoa et al. 2006). C-F···π (Dorn et al., 2005), S-O···π (Dorn et al., 2005) and the π-π (Hunter et al., 2001) interactions should be of an attractive nature. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

Experimental

The compound was synthesized in two steps (Sikorski et al., 2005). First, 9-(chlorocarbonyl)acridine, obtained by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride, was esterified with 4-fluorophenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h) (Sato, 1996). Second, the product - 4-fluorophenylacridine-9-carboxylate, purified chromatographically (SiO2, cyclohexane/ethyl acetate, 1/1 v/v) - was quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-(4-fluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with 20 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 474-475 K).

Refinement

H atoms were positioned geometrically, with C–H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. ...
Fig. 2.
The arrangement of the ions in the crystal structure. The C-H···O interactions are represented by dashed lines, the C-F···π, S-O···π and π-π contacts ...

Crystal data

C21H15FNO2+·CF3SO3F(000) = 1968
Mr = 481.41Dx = 1.557 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3994 reflections
a = 20.854 (3) Åθ = 3.0–24.9°
b = 7.8092 (12) ŵ = 0.23 mm1
c = 25.690 (4) ÅT = 295 K
β = 100.893 (15)°Plate, yellow
V = 4108.2 (11) Å30.38 × 0.29 × 0.05 mm
Z = 8

Data collection

Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer3634 independent reflections
Radiation source: Enhanced (Mo) X-ray Source1978 reflections with I > 2σ(I)
graphiteRint = 0.045
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.1°
ω scansh = −23→24
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008)k = −9→9
Tmin = 0.676, Tmax = 0.985l = −30→30
15588 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 0.91w = 1/[σ2(Fo2) + (0.068P)2] where P = (Fo2 + 2Fc2)/3
3634 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.03283 (13)0.1193 (3)0.11048 (10)0.0600 (7)
H10.00110.10230.08020.072*
C20.02112 (15)0.0689 (4)0.15766 (12)0.0797 (9)
H2−0.01860.01860.16020.096*
C30.06910 (18)0.0924 (5)0.20305 (12)0.0860 (10)
H30.06080.05600.23560.103*
C40.12683 (16)0.1660 (4)0.20108 (10)0.0707 (8)
H40.15780.17920.23200.085*
C50.27041 (13)0.4437 (4)0.09888 (12)0.0660 (7)
H50.30200.45860.12930.079*
C60.28130 (13)0.5020 (4)0.05259 (13)0.0733 (8)
H60.32050.55720.05140.088*
C70.23522 (14)0.4824 (4)0.00556 (11)0.0698 (8)
H70.24350.5262−0.02620.084*
C80.17902 (13)0.3997 (3)0.00688 (9)0.0568 (7)
H80.14880.3852−0.02440.068*
C90.10650 (12)0.2530 (3)0.05781 (9)0.0441 (6)
N100.19775 (10)0.3032 (3)0.14935 (8)0.0539 (6)
C110.09265 (12)0.1981 (3)0.10599 (9)0.0471 (6)
C120.14047 (13)0.2230 (3)0.15271 (9)0.0508 (6)
C130.16483 (12)0.3344 (3)0.05474 (9)0.0475 (6)
C140.21142 (11)0.3595 (3)0.10230 (9)0.0503 (6)
C150.05947 (12)0.2166 (3)0.00717 (9)0.0465 (6)
O160.00735 (8)0.3201 (2)0.00150 (6)0.0547 (5)
O170.06869 (8)0.1103 (2)−0.02370 (6)0.0632 (5)
C18−0.03879 (12)0.3069 (3)−0.04620 (9)0.0463 (6)
C19−0.02424 (12)0.3744 (3)−0.09170 (9)0.0544 (6)
H190.01610.4252−0.09170.065*
C20−0.07040 (12)0.3656 (3)−0.13730 (9)0.0584 (7)
H20−0.06190.4093−0.16900.070*
C21−0.12898 (12)0.2915 (3)−0.13526 (10)0.0573 (7)
C22−0.14428 (12)0.2281 (3)−0.09000 (10)0.0589 (7)
H22−0.18510.1800−0.09000.071*
C23−0.09828 (12)0.2366 (3)−0.04435 (10)0.0541 (6)
H23−0.10740.1952−0.01260.065*
F24−0.17440 (7)0.2840 (2)−0.18049 (6)0.0861 (5)
C250.24602 (14)0.3310 (4)0.19848 (10)0.0818 (9)
H25A0.27550.42070.19300.123*
H25B0.27020.22730.20790.123*
H25C0.22380.36290.22650.123*
S260.15240 (4)0.38413 (11)0.35642 (3)0.0719 (3)
O270.15245 (13)0.2321 (3)0.32563 (8)0.1034 (8)
O280.11971 (11)0.3678 (3)0.40094 (7)0.0928 (7)
O290.21189 (9)0.4779 (3)0.36698 (9)0.1031 (8)
C300.09881 (15)0.5223 (5)0.31287 (13)0.0770 (9)
F310.11978 (10)0.5488 (3)0.26795 (7)0.1135 (7)
F320.09350 (10)0.6752 (3)0.33429 (9)0.1138 (7)
F330.03935 (9)0.4604 (3)0.30042 (8)0.1163 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0610 (18)0.0645 (16)0.0525 (16)−0.0065 (14)0.0053 (13)−0.0087 (14)
C20.078 (2)0.095 (2)0.071 (2)−0.0137 (17)0.0241 (18)−0.0010 (17)
C30.098 (3)0.112 (3)0.0518 (18)−0.003 (2)0.0229 (18)0.0057 (17)
C40.077 (2)0.092 (2)0.0400 (16)0.0092 (18)0.0029 (14)−0.0005 (15)
C50.0481 (16)0.0763 (19)0.0671 (19)−0.0031 (14)−0.0056 (14)−0.0100 (16)
C60.0557 (18)0.079 (2)0.086 (2)−0.0064 (16)0.0130 (17)−0.0049 (18)
C70.0716 (19)0.0736 (19)0.0665 (18)−0.0049 (16)0.0190 (16)0.0019 (15)
C80.0601 (17)0.0600 (16)0.0462 (15)−0.0010 (14)0.0000 (12)0.0017 (12)
C90.0509 (15)0.0377 (12)0.0391 (14)0.0074 (11)−0.0028 (11)−0.0044 (10)
N100.0524 (14)0.0609 (13)0.0419 (13)0.0078 (11)−0.0074 (10)−0.0062 (10)
C110.0519 (15)0.0430 (13)0.0439 (15)0.0066 (12)0.0026 (12)−0.0042 (11)
C120.0584 (17)0.0512 (15)0.0398 (15)0.0114 (13)0.0017 (12)−0.0043 (11)
C130.0466 (15)0.0447 (14)0.0469 (15)0.0063 (12)−0.0016 (12)−0.0054 (11)
C140.0462 (15)0.0529 (15)0.0466 (15)0.0067 (12)−0.0045 (12)−0.0038 (12)
C150.0499 (15)0.0449 (14)0.0409 (14)0.0005 (12)−0.0011 (12)0.0005 (11)
O160.0563 (10)0.0565 (10)0.0448 (9)0.0131 (9)−0.0070 (8)−0.0087 (8)
O170.0652 (12)0.0623 (11)0.0540 (11)0.0152 (9)−0.0090 (9)−0.0200 (9)
C180.0475 (15)0.0457 (13)0.0406 (14)0.0093 (12)−0.0047 (11)−0.0024 (11)
C190.0432 (14)0.0631 (16)0.0541 (16)−0.0029 (12)0.0016 (12)−0.0018 (13)
C200.0553 (17)0.0742 (17)0.0432 (14)0.0011 (14)0.0027 (13)0.0031 (13)
C210.0463 (16)0.0646 (17)0.0527 (16)0.0050 (13)−0.0116 (13)−0.0039 (13)
C220.0426 (15)0.0630 (17)0.0661 (19)−0.0024 (13)−0.0027 (14)0.0048 (14)
C230.0532 (16)0.0524 (15)0.0571 (16)0.0047 (13)0.0111 (13)0.0099 (12)
F240.0617 (10)0.1201 (13)0.0636 (10)−0.0034 (9)−0.0210 (8)0.0016 (9)
C250.0658 (19)0.120 (3)0.0491 (16)−0.0003 (18)−0.0162 (14)−0.0050 (16)
S260.0683 (5)0.0884 (5)0.0517 (4)0.0159 (4)−0.0074 (4)−0.0033 (4)
O270.145 (2)0.0928 (16)0.0634 (13)0.0384 (15)−0.0047 (13)−0.0118 (12)
O280.1093 (17)0.1221 (18)0.0467 (11)0.0021 (14)0.0142 (11)0.0038 (11)
O290.0523 (12)0.138 (2)0.1089 (17)0.0033 (13)−0.0110 (11)0.0050 (15)
C300.069 (2)0.095 (3)0.068 (2)0.0111 (18)0.0138 (17)0.0039 (19)
F310.1171 (15)0.1541 (19)0.0703 (12)0.0225 (13)0.0202 (11)0.0343 (12)
F320.1120 (16)0.0935 (15)0.1339 (17)0.0282 (12)0.0182 (13)0.0020 (13)
F330.0566 (11)0.164 (2)0.1149 (15)0.0014 (12)−0.0169 (10)0.0110 (14)

Geometric parameters (Å, °)

C1—C21.340 (4)C13—C141.423 (3)
C1—C111.415 (3)C15—O171.188 (3)
C1—H10.9300C15—O161.340 (3)
C2—C31.398 (4)O16—C181.412 (3)
C2—H20.9300C18—C231.366 (3)
C3—C41.344 (4)C18—C191.368 (3)
C3—H30.9300C19—C201.370 (3)
C4—C121.399 (4)C19—H190.9300
C4—H40.9300C20—C211.362 (4)
C5—C61.332 (4)C20—H200.9300
C5—C141.412 (4)C21—F241.355 (3)
C5—H50.9300C21—C221.356 (3)
C6—C71.403 (4)C22—C231.369 (3)
C6—H60.9300C22—H220.9300
C7—C81.344 (3)C23—H230.9300
C7—H70.9300C25—H25A0.9600
C8—C131.413 (3)C25—H25B0.9600
C8—H80.9300C25—H25C0.9600
C9—C131.388 (3)S26—O291.422 (2)
C9—C111.391 (3)S26—O271.427 (2)
C9—C151.501 (3)S26—O281.444 (2)
N10—C141.366 (3)S26—C301.787 (3)
N10—C121.366 (3)C30—F331.313 (3)
N10—C251.474 (3)C30—F311.325 (3)
C11—C121.421 (3)C30—F321.328 (4)
C2—C1—C11121.0 (2)C5—C14—C13118.1 (2)
C2—C1—H1119.5O17—C15—O16125.4 (2)
C11—C1—H1119.5O17—C15—C9123.3 (2)
C1—C2—C3119.5 (3)O16—C15—C9111.3 (2)
C1—C2—H2120.3C15—O16—C18117.11 (17)
C3—C2—H2120.3C23—C18—C19122.3 (2)
C4—C3—C2122.0 (3)C23—C18—O16118.3 (2)
C4—C3—H3119.0C19—C18—O16119.3 (2)
C2—C3—H3119.0C18—C19—C20118.5 (2)
C3—C4—C12120.2 (3)C18—C19—H19120.7
C3—C4—H4119.9C20—C19—H19120.7
C12—C4—H4119.9C21—C20—C19118.6 (2)
C6—C5—C14120.8 (2)C21—C20—H20120.7
C6—C5—H5119.6C19—C20—H20120.7
C14—C5—H5119.6F24—C21—C22118.7 (2)
C5—C6—C7121.8 (3)F24—C21—C20118.2 (2)
C5—C6—H6119.1C22—C21—C20123.1 (2)
C7—C6—H6119.1C21—C22—C23118.4 (2)
C8—C7—C6119.3 (3)C21—C22—H22120.8
C8—C7—H7120.3C23—C22—H22120.8
C6—C7—H7120.3C18—C23—C22118.9 (2)
C7—C8—C13121.5 (2)C18—C23—H23120.5
C7—C8—H8119.3C22—C23—H23120.5
C13—C8—H8119.3N10—C25—H25A109.5
C13—C9—C11121.6 (2)N10—C25—H25B109.5
C13—C9—C15118.3 (2)H25A—C25—H25B109.5
C11—C9—C15120.1 (2)N10—C25—H25C109.5
C14—N10—C12122.33 (19)H25A—C25—H25C109.5
C14—N10—C25119.2 (2)H25B—C25—H25C109.5
C12—N10—C25118.5 (2)O29—S26—O27116.26 (16)
C9—C11—C1122.8 (2)O29—S26—O28114.84 (13)
C9—C11—C12118.6 (2)O27—S26—O28114.55 (15)
C1—C11—C12118.6 (2)O29—S26—C30103.21 (15)
N10—C12—C4121.9 (2)O27—S26—C30102.78 (15)
N10—C12—C11119.5 (2)O28—S26—C30102.50 (14)
C4—C12—C11118.6 (3)F33—C30—F31107.3 (2)
C9—C13—C8123.0 (2)F33—C30—F32106.4 (3)
C9—C13—C14118.5 (2)F31—C30—F32106.7 (3)
C8—C13—C14118.4 (2)F33—C30—S26112.4 (2)
N10—C14—C5122.3 (2)F31—C30—S26111.7 (2)
N10—C14—C13119.5 (2)F32—C30—S26112.0 (2)
C11—C1—C2—C3−0.9 (4)C6—C5—C14—C131.7 (4)
C1—C2—C3—C40.7 (5)C9—C13—C14—N100.1 (3)
C2—C3—C4—C120.4 (5)C8—C13—C14—N10177.6 (2)
C14—C5—C6—C7−0.1 (4)C9—C13—C14—C5−179.5 (2)
C5—C6—C7—C8−1.3 (4)C8—C13—C14—C5−2.0 (3)
C6—C7—C8—C131.1 (4)C13—C9—C15—O1771.6 (3)
C13—C9—C11—C1178.1 (2)C11—C9—C15—O17−105.2 (3)
C15—C9—C11—C1−5.2 (3)C13—C9—C15—O16−107.5 (2)
C13—C9—C11—C12−1.5 (3)C11—C9—C15—O1675.7 (3)
C15—C9—C11—C12175.2 (2)O17—C15—O16—C18−3.1 (4)
C2—C1—C11—C9−179.6 (2)C9—C15—O16—C18175.98 (19)
C2—C1—C11—C120.0 (4)C15—O16—C18—C23109.5 (2)
C14—N10—C12—C4−179.9 (2)C15—O16—C18—C19−74.8 (3)
C25—N10—C12—C4−0.5 (4)C23—C18—C19—C20−2.3 (4)
C14—N10—C12—C11−0.7 (3)O16—C18—C19—C20−177.8 (2)
C25—N10—C12—C11178.7 (2)C18—C19—C20—C210.6 (4)
C3—C4—C12—N10177.9 (3)C19—C20—C21—F24179.8 (2)
C3—C4—C12—C11−1.3 (4)C19—C20—C21—C221.0 (4)
C9—C11—C12—N101.5 (3)F24—C21—C22—C23−179.8 (2)
C1—C11—C12—N10−178.2 (2)C20—C21—C22—C23−1.1 (4)
C9—C11—C12—C4−179.3 (2)C19—C18—C23—C222.3 (4)
C1—C11—C12—C41.1 (3)O16—C18—C23—C22177.9 (2)
C11—C9—C13—C8−176.6 (2)C21—C22—C23—C18−0.6 (4)
C15—C9—C13—C86.6 (3)O29—S26—C30—F33−176.9 (2)
C11—C9—C13—C140.8 (3)O27—S26—C30—F3361.8 (3)
C15—C9—C13—C14−176.0 (2)O28—S26—C30—F33−57.3 (3)
C7—C8—C13—C9178.0 (2)O29—S26—C30—F3162.5 (3)
C7—C8—C13—C140.6 (4)O27—S26—C30—F31−58.8 (3)
C12—N10—C14—C5179.4 (2)O28—S26—C30—F31−177.9 (2)
C25—N10—C14—C50.1 (4)O29—S26—C30—F32−57.1 (3)
C12—N10—C14—C13−0.1 (3)O27—S26—C30—F32−178.4 (2)
C25—N10—C14—C13−179.5 (2)O28—S26—C30—F3262.5 (3)
C6—C5—C14—N10−177.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···O17i0.932.493.299 (3)146
C4—H4···O270.932.463.185 (3)134
C5—H5···O27ii0.932.533.200 (4)130
C22—H22···O29iii0.932.543.399 (3)153

Symmetry codes: (i) −x, −y, −z; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x−1/2, −y+1/2, z−1/2.

Table 2 C-F···π and S-O···π interactions (Å,°).

XIJI···JX···JX-I···J
C21F24Cg2i3.870 (2)3.616 (3)69.12 (12)
C30F33Cg2iv3.835 (2)4.951 (4)143.41 (19)
S26O29Cg1ii3.646 (2)5.055 (15)170.66 (13)

Symmetry codes: (i) -x, -y, -z; (ii) -x + 1/2, y + 1/2, -z + 1/2; (iv) -x, y, -z + 1/2.Notes: Cg1 and Cg2 are the centroids of the C9/N10/C11-C14 and C1-C4/C11/C12 rings, respectively.

Table 3 π-π interactions (Å,°).

IJCgI···CgJDihedral angleCgI_PerpCgI_Offset
14v3.572 (2)5.04 (11)3.408 (1)1.089 (2)
24i3.856 (2)4.29 (13)3.596 (2)1.392 (2)
34v3.898 (2)4.66 (12)3.380 (2)1.942 (2)
41v3.572 (2)5.04 (11)3.472 (1)0.839 (2)
42i3.856 (2)4.29 (13)3.502 (1)1.614 (2)
43v3.898 (2)4.66 (12)3.483 (1)1.750 (2)

Symmetry codes: (i) -x, -y, -z; (v) -x, -y + 1, -z.Notes: Cg1, Cg2, Cg3 and Cg4 are the centroids of the C9/N10/C11-C14, C1-C4/C11/C12, C5-C8/C13/C14 and C18-C23 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5037).

References

  • Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. [PubMed]
  • Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem.7, 386–394. [PubMed]
  • Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.
  • King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O’Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem.79, 4169–4176. [PubMed]
  • Novoa, J. J., Mota, F. & D’Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.
  • Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem.64, 3002–3008. [PubMed]
  • Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462–470.
  • Sato, N. (1996). Tetrahedron Lett.37, 8519–8522.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sikorski, A., Krzymiński, K., Niziołek, A. & Błażejowski, J. (2005). Acta Cryst. C61, o690–o694. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Trzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o1313–o1314. [PMC free article] [PubMed]
  • Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography