PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2836.
Published online 2010 October 20. doi:  10.1107/S1600536810040481
PMCID: PMC3009328

4-Bromo­anilinium perchlorate 18-crown-6 clathrate

Abstract

The reaction of 4-bromo­aniline, 18-crown-6, and perchloric acid in methanol yields the title compound, C6H7BrN+·ClO4 ·C12H24O6, in which the protonated –NH3 + group forms three bifurcated N—H(...)O hydrogen bonds to the O atoms of the crown ether.

Related literature

For similar crown ether clathrates, see: Akutagawa et al. (2002 [triangle]); Ge et al. (2010 [triangle]); Zhao (2010 [triangle]). For their ferroelectric properties, see: Zhang, Cheng et al. (2009 [triangle]); Zhang, Ye et al. (2009 [triangle]); Ye et al. (2009 [triangle]). For related structures, see: Ge & Zhao (2010a [triangle],b [triangle]); Zhao & Qu (2010a [triangle] b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2836-scheme1.jpg

Experimental

Crystal data

  • C6H7BrN+·ClO4 ·C12H24O6
  • M r = 536.79
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2836-efi1.jpg
  • a = 15.583 (7) Å
  • b = 11.469 (5) Å
  • c = 12.633 (6) Å
  • V = 2257.7 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.99 mm−1
  • T = 93 K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.671, T max = 0.678
  • 23692 measured reflections
  • 2694 independent reflections
  • 2561 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.104
  • S = 1.01
  • 2694 reflections
  • 146 parameters
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.50 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810040481/jh2210sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040481/jh2210Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

supplementary crystallographic information

Comment

There is currently much interest in crown ethers due to their ability to form non-covalent, H-bonding complexes with ammonium cations both in solid and in solution. Not only the size of the crown ether, but also the nature of the ammonium cation (–NH4+, RNH3+, R2NH2+, etc) can influence on the stoichiometry and stability of these host–guest complexes (Zhao et al. 2010). The host molecules combine with the guest species by intermolecular interaction, and if the host molecule possess some specific sites, it is easy to realise high selectivity in ion or molecular recognitions. 18-Crown-6 have the highest affinity for ammonium cation RNH3+.

Dielectric permittivity of the title compound is tested to systematically investigate the ferroelectric phase transitions materials (Ye et al., 2009; Zhang et al., 2009). The title compound has no dielectric anomaly with the value of 3.5 and 7.8 under 1M Hz in the temperature from 80 to 430 K (m.p.> 453 K), suggesting that the compound should be no distinct phase transition occurred within the measured temperature range.

The title compound is composed of cationic [C6BrNH7(18-Crown-6)]+ and one single anionic [ClO4]- anions (Fig. 1). Supramolecular rotators was assembled between protonated 4-bromoaniline (C6BrH4—NH3)+and 18-crown-6 by of hydrogen-bonding. The ammonium moieties of (–NH3+) cations were interacted with the oxygen atom of crown ethers through six simple N—H···O hydrogen bonding, forming 1:1 supramolecular rotator-stator structures.

Supramolecular cation structure, [C6BrNH7(18-Crown-6)]+, were introduced as counter cations to [ClO4]- anions. The crown adopts a conformation in which the rings show some distortion from the mean plane. The C—N bonds of [C6BrNH7]+ were almost perpendicular to the mean oxygen planes of crown ethers. Cl has a flattened tetrahedral coordination by four O- ions [range of cis-bond angles = 109.08 (14)–109.88 (15) °; dav (Cl—O) = 1.444 (2)–1.449 (2) Å].

The title compound was stabilized by intramolecular N—H···O hydrogen bonds, but no intermolecular hydrogen bond was observed (Fig. 2). The intramolecular N—H···O hydrogen bonding length are within the usual range: 2.850 (3) and 2.938 (2) Å.

Experimental

C6BrNH6.HClO4 (2 mmol, 0.546 g) and 18-crown-6 (2 mmol, 0.528 g) were dissolved in methanol solution. The precipitate was filtered out. Two days later, single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of methanol solution at 0°C.

Refinement

All the C—H hydrogen atoms were calculated geometrically and with C—H distances ranging from 0.93 to 0.97 Å and were allowed to ride on the C and O atoms to which they are bonded. With which Uiso(H) = 1.2Ueq(C).

All the N—H hydrogen atoms were calculated geometrically. The positions of the H atoms of the nitrogen atoms were refined using a riding model with N—H = 0.91 Å and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.

Crystal data

C6H7BrN+·ClO4·C12H24O6F(000) = 1112
Mr = 536.79Dx = 1.579 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 6002 reflections
a = 15.583 (7) Åθ = 3.1–27.5°
b = 11.469 (5) ŵ = 1.99 mm1
c = 12.633 (6) ÅT = 93 K
V = 2257.7 (18) Å3Prism, colorless
Z = 40.20 × 0.20 × 0.20 mm

Data collection

Rigaku SCXmini diffractometer2694 independent reflections
Radiation source: fine-focus sealed tube2561 reflections with I > 2σ(I)
graphiteRint = 0.046
Detector resolution: 28.5714 pixels mm-1θmax = 27.4°, θmin = 3.1°
CCD_Profile_fitting scansh = −20→20
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −14→14
Tmin = 0.671, Tmax = 0.678l = −16→16
23692 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0645P)2 + 1.990P] where P = (Fo2 + 2Fc2)/3
2694 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = −0.49 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C50.28939 (14)0.14670 (19)0.53702 (17)0.0192 (5)
H5A0.34030.14180.57960.023*
H5B0.24060.14910.58340.023*
C60.28315 (14)0.0420 (2)0.46603 (19)0.0189 (4)
H6A0.2881−0.02830.50690.023*
H6B0.32890.04350.41520.023*
C70.18311 (14)−0.06318 (18)0.35971 (17)0.0172 (4)
H7A0.2267−0.08000.30830.021*
H7B0.1816−0.12580.41010.021*
C80.09748 (14)−0.05164 (18)0.30595 (17)0.0171 (4)
H8A0.0552−0.02620.35610.020*
H8B0.0797−0.12560.27780.020*
C90.02573 (13)0.04351 (19)0.16556 (17)0.0164 (4)
H9A0.0147−0.02620.12570.020*
H9B−0.02060.05460.21450.020*
C100.03150 (14)0.14646 (18)0.09257 (16)0.0159 (4)
H10A−0.01900.15080.04920.019*
H10B0.08060.13860.04720.019*
O10.29171 (15)0.25000.47351 (17)0.0175 (4)
O20.20209 (9)0.04497 (13)0.41238 (12)0.0166 (3)
O30.10476 (9)0.03158 (13)0.22212 (12)0.0156 (3)
O40.03915 (14)0.25000.15568 (16)0.0148 (4)
O50.11943 (10)0.14672 (14)0.73375 (13)0.0243 (4)
O60.01814 (13)0.25000.83702 (18)0.0184 (5)
O70.16415 (14)0.25000.88559 (18)0.0200 (5)
Cl10.10535 (4)0.25000.79722 (6)0.01469 (17)
N10.18963 (16)0.25000.2839 (2)0.0142 (5)
H1A0.17360.17520.29750.021*0.50
H1B0.14620.28790.25010.021*0.50
H1C0.20160.28700.34590.021*0.50
C10.4115 (2)0.25000.0932 (2)0.0179 (6)*
C20.37554 (14)0.35578 (19)0.12293 (17)0.0185 (4)*
H2A0.40060.42720.10070.022*
C30.30225 (14)0.35541 (18)0.18573 (16)0.0164 (4)
H3A0.27690.42680.20740.020*
C40.26646 (19)0.25000.2164 (2)0.0139 (5)
Br10.51210 (2)0.25000.00763 (3)0.02519 (13)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C50.0183 (10)0.0250 (12)0.0142 (10)0.0009 (8)−0.0030 (8)0.0049 (9)
C60.0143 (10)0.0211 (11)0.0212 (10)0.0029 (8)−0.0023 (8)0.0037 (9)
C70.0202 (10)0.0131 (9)0.0184 (10)0.0006 (8)0.0010 (8)0.0021 (8)
C80.0199 (10)0.0141 (10)0.0173 (10)−0.0025 (8)0.0004 (8)0.0022 (8)
C90.0161 (9)0.0140 (10)0.0192 (10)−0.0025 (8)−0.0022 (8)−0.0007 (8)
C100.0162 (9)0.0168 (10)0.0147 (10)−0.0008 (8)−0.0021 (8)−0.0032 (8)
O10.0214 (11)0.0173 (10)0.0138 (10)0.000−0.0018 (8)0.000
O20.0158 (7)0.0142 (7)0.0199 (7)0.0015 (6)−0.0036 (6)0.0005 (6)
O30.0158 (7)0.0138 (7)0.0172 (7)−0.0020 (5)−0.0012 (6)0.0033 (6)
O40.0195 (10)0.0101 (9)0.0148 (10)0.000−0.0032 (8)0.000
O50.0232 (8)0.0215 (8)0.0281 (9)0.0019 (6)0.0025 (7)−0.0111 (7)
O60.0130 (10)0.0196 (11)0.0227 (12)0.0000.0015 (8)0.000
O70.0172 (11)0.0225 (11)0.0203 (11)0.000−0.0038 (9)0.000
Cl10.0135 (3)0.0137 (3)0.0168 (3)0.0000.0006 (2)0.000
N10.0141 (12)0.0124 (11)0.0162 (12)0.000−0.0009 (9)0.000
C30.0182 (10)0.0148 (10)0.0161 (10)0.0001 (8)−0.0017 (8)−0.0017 (8)
C40.0135 (13)0.0183 (14)0.0099 (12)0.000−0.0025 (10)0.000
Br10.01691 (19)0.0359 (2)0.0227 (2)0.0000.00469 (11)0.000

Geometric parameters (Å, °)

C5—O11.431 (2)C10—H10B0.9600
C5—C61.502 (3)O1—C5i1.431 (2)
C5—H5A0.9601O4—C10i1.435 (2)
C5—H5B0.9600O5—Cl11.4471 (16)
C6—O21.434 (3)O6—Cl11.449 (2)
C6—H6A0.9601O7—Cl11.444 (2)
C6—H6B0.9598Cl1—O5i1.4471 (16)
C7—O21.438 (3)N1—C41.470 (4)
C7—C81.503 (3)N1—H1A0.9100
C7—H7A0.9599N1—H1B0.9100
C7—H7B0.9600N1—H1C0.9100
C8—O31.430 (2)C1—C21.388 (3)
C8—H8A0.9601C1—C2i1.388 (3)
C8—H8B0.9601C1—Br11.905 (3)
C9—O31.430 (3)C2—C31.391 (3)
C9—C101.501 (3)C2—H2A0.9500
C9—H9A0.9600C3—C41.387 (3)
C9—H9B0.9600C3—H3A0.9500
C10—O41.435 (2)C4—C3i1.387 (3)
C10—H10A0.9600
O1—C5—C6109.20 (18)C9—C10—H10A110.0
O1—C5—H5A109.9O4—C10—H10B110.1
C6—C5—H5A110.0C9—C10—H10B109.9
O1—C5—H5B109.7H10A—C10—H10B108.4
C6—C5—H5B109.6C5i—O1—C5111.7 (2)
H5A—C5—H5B108.3C6—O2—C7112.27 (16)
O2—C6—C5108.66 (17)C8—O3—C9111.43 (15)
O2—C6—H6A110.2C10i—O4—C10111.7 (2)
C5—C6—H6A110.2O7—Cl1—O5i109.40 (9)
O2—C6—H6B109.8O7—Cl1—O5109.40 (9)
C5—C6—H6B109.7O5i—Cl1—O5109.88 (15)
H6A—C6—H6B108.4O7—Cl1—O6109.08 (14)
O2—C7—C8108.39 (17)O5i—Cl1—O6109.53 (9)
O2—C7—H7A109.9O5—Cl1—O6109.53 (9)
C8—C7—H7A109.9C4—N1—H1A109.5
O2—C7—H7B110.1C4—N1—H1B109.5
C8—C7—H7B110.1H1A—N1—H1B109.5
H7A—C7—H7B108.4C4—N1—H1C109.5
O3—C8—C7108.84 (16)H1A—N1—H1C109.5
O3—C8—H8A109.9H1B—N1—H1C109.5
C7—C8—H8A109.8C2—C1—C2i121.9 (3)
O3—C8—H8B109.8C2—C1—Br1119.06 (14)
C7—C8—H8B110.2C2i—C1—Br1119.06 (14)
H8A—C8—H8B108.4C1—C2—C3118.9 (2)
O3—C9—C10109.31 (17)C1—C2—H2A120.6
O3—C9—H9A109.7C3—C2—H2A120.6
C10—C9—H9A110.1C4—C3—C2119.5 (2)
O3—C9—H9B109.8C4—C3—H3A120.3
C10—C9—H9B109.7C2—C3—H3A120.3
H9A—C9—H9B108.3C3i—C4—C3121.4 (3)
O4—C10—C9108.34 (17)C3i—C4—N1119.32 (14)
O4—C10—H10A110.0C3—C4—N1119.32 (14)

Symmetry codes: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.912.132.864 (2)137
N1—H1A···O30.912.182.938 (2)140
N1—H1B···O40.912.102.850 (3)139
N1—H1B···O3i0.912.202.938 (2)138
N1—H1C···O2i0.912.102.864 (2)141
N1—H1C···O10.912.182.875 (3)133

Symmetry codes: (i) x, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2210).

References

  • Akutagawa, T., Hashimoto, A., Nishihara, S., Hasegawa, T. & Nakamura, T. (2002). J. Supramol. Chem 2,175–186.
  • Ge, J.-Z. & Zhao, M.-M. (2010a). Acta Cryst. E66, m739. [PMC free article] [PubMed]
  • Ge, J.-Z. & Zhao, M.-M. (2010b). Acta Cryst. E66, o1478. [PMC free article] [PubMed]
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Ye, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc.131, 42–43. [PubMed]
  • Zhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc.131, 12544–12545. [PubMed]
  • Zhang, W., Ye, H. Y. & Xiong, R. G. (2009). Coord. Chem. Rev.253, 2980–2997.
  • Zhao, M. M. (2010). Acta Cryst. E66, o1618. [PMC free article] [PubMed]
  • Zhao, M. M. & Qu, Z. R. (2010a). Acta Cryst. C66, m188–m190. [PubMed]
  • Zhao, M. M. & Qu, Z. R. (2010b). Acta Cryst. C66, m215–m217. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography