PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2904–o2905.
Published online 2010 October 23. doi:  10.1107/S1600536810041346
PMCID: PMC3009325

1,8-Bis(4-amino­benzo­yl)-2,7-dimeth­oxy­naphthalene

Abstract

The title compound {systematic name: [8-(4-aminobenzoyl)-2,7-dimethoxynaphthalen-1-yl](4-aminophenyl)methanone}, C26H22O4N2, possesses crystallographically imposed twofold symmetry, with two C atoms lying on the rotation axis. In the crystal, the mol­ecules inter­act through inter­molecular N—H(...)O hydrogen bonds between the amino and meth­oxy groups on the naphthalene ring systems and N—H(...)π inter­actions between the amino groups and the naphthalene rings. Furthermore, weak C—H(...)O hydrogen bonds and π–π stacking inter­actions between the benzene rings are observed. The centroid–centroid and inter­planar distances between the benzene rings of the aroyl group and the naphthalene ring systems of adjacent mol­ecules are 3.6954 (8) and 3.2375 (5) Å, respectively. The dihedral angle between the mean planes of the benzene ring and the naphthalene ring system is 83.59 (5)°. The benzene ring and the carbonyl group in the benzoyl unit are almost coplanar [C—C—C—O torsion angle = 175.91 (10)°].

Related literature

For the formation reaction of aroylated naphthalene compounds via electrophilic aromatic aroylation of 2,7-dimeth­oxy­naphthalene, see: Okamoto & Yonezawa (2009 [triangle]). For related structures, see: Muto et al. (2010 [triangle]); Nakaema et al. (2007 [triangle], 2008 [triangle]); Watanabe et al. (2010a [triangle],b [triangle]). For work-up procedure in the preparation of the title compound, see: Bellamy et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2904-scheme1.jpg

Experimental

Crystal data

  • C26H22N2O4
  • M r = 426.46
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2904-efi2.jpg
  • a = 14.2996 (3) Å
  • b = 10.2811 (2) Å
  • c = 15.4306 (3) Å
  • β = 114.523 (1)°
  • V = 2063.90 (7) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.76 mm−1
  • T = 193 K
  • 0.40 × 0.30 × 0.10 mm

Data collection

  • Rigaki R-AXIS RAPID diffractometer
  • Absorption correction: numerical (NUMABS; Higashi, 1999 [triangle]) T min = 0.751, T max = 0.928
  • 17453 measured reflections
  • 1892 independent reflections
  • 1690 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.114
  • S = 1.12
  • 1892 reflections
  • 178 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536810041346/rz2496sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041346/rz2496Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by the Sasagawa Scientific Research Grant from the Japan Science Society.

supplementary crystallographic information

Comment

In the course of our study on selective electrophilic aromatic aroylation of naphthalene core, peri-aroylnaphthalene compounds have proved to be formed regioselectively by the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). The aroyl groups at 1,8-positions of the naphthalene rings in these compounds are oriented in opposite direction. The aromatic rings in this molecule are clarified to be assembled with non-coplanar configuration resulting in partial disruption of π-conjugated ring systems. Recently, we reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalenes such as 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007), 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), bis(4-bromophenyl) (2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe et al., 2010a), (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl)dimethanone (Watanabe et al., 2010b) and 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., in press). As a part of our continuous study on the molecular structures of this kind of homologous molecules, the X-ray crystal structure of title compound, (I), a peri-aroylnaphthalene bearing amino groups, is discussed in this article.

An ORTEPIII (Burnett & Johnson, 1996) plot of title compound is displayed in Fig. 1. The molecule of (I) lies across a crystallographic 2-fold axis so that the asymmetric unit contains one-half of the molecule. Thus, the two benzoyl groups are situated in anti orientation. The benzoyl groups are twisted away from the naphthalene moiety, and the dihedral angle is 83.59 (5)°. The torsion angle between the carbonyl group and the naphthalene ring is -89.52 (13)° [O2—C7—-C8—-C13], and that between the carbonyl group and the benzene ring is 175.91 (10)° [C5—C4—C7—O2].

The molecular packing of (I) is mainly stabilized by intermolecular hydrogen bond and van der Waals interaction (Table 1).The amino groups interact with the methoxy groups [N1—H4···O1i = 2.26 (2) Å; symmetry code: (i)-x + 3/2, -y - 1/2, -z + 2] of the adjacent molecules along the b axis (Fig. 2). Moreover, molecules are linked by N—H···π interactions along the c axis (Fig. 3). Besides, relatively weak C—H···O hydrogen bonding, C14—H14B···O2ii[symmetry code: (ii) -x + 3/2, y - 1/2, -z + 3/2], and a π—π stacking interaction are observed. In the packing, the molecules form the column structure of stacked naphthalene rings by π—π interaction perpendicular to the bc plane with alignment by N—H···π interaction and C—H···O hydrogen bonding along the c axis of the unit cell (Fig. 4).

Experimental

The title compound was prepared by reduction reaction of 1,8-bis(4-nitrobenzoyl)-2,7-dimethoxynaphthalene (486.4 mg, 1.0 mmol), which was obtained via electrophilic aromatic diaroylation reaction of 2,7-dimethoxynaphthalene with 4-nitrobenzoyl chloride, with stannous chloride dihydrate (2.256 g, 10 mmol) in EtOH (8.0 ml) at 343 K for 2 h. The reaction mixture was worked up by reference to the previously outlined procedure (Bellamy et al., 1984). Isolated yield 96%. Brown single crystals suitable for X-ray diffraction were obtained by recrystallization from methanol.

Spectral data:1H NMR (300 MHz, CDCl3) δ 3.71 (6H, s), 4.02 (4H, s), 6.54 (4H, broad), 7.18 (2H, d, J = 8.7 Hz), 7.53 (4H, broad), 7.88 (2H, d, J = 9.6 Hz); 13C NMR (75 MHz, DMSO) δ 56.37, 111.59. 112.22, 122.11, 125.06. 127.41, 128.86, 131.15, 131.29, 153.09, 155.06, 192.49; IR (KBr): 3463.53 (N—H), 3374.82 (N—H), 1644.98 (C═O), 1595.81 (Ar), 1508.06 (Ar)cm-1; HRMS (m/z): [M + H]+ Calcd for C26H23O4N2, 427.1658; found, 427.1633; m.p.= 580.5–583.0 K(decomp).

Refinement

All the H-atoms could be located in difference Fourier maps. The amine and aromatic hydrogen atoms were freely refined. The hydrogen atom of methyl groups were subsequently refined as riding atoms with C—H = 0.96 Å and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular structure of title compound with displacement ellipsoids drawn at the 50% probability level. The symbol_2 refers to symmetry code: -x + 1, y, -z + 3/2.
Fig. 2.
Side view of the N—H···O hydrogen bond (blue dashed lines) and the π—π interaction (red dashed lines).
Fig. 3.
Side view of the N—H···π interactions (dashed lines).
Fig. 4.
A partial packing diagram of the title compound, viewed down the b axis.

Crystal data

C26H22N2O4F(000) = 896
Mr = 426.46Dx = 1.372 Mg m3
Monoclinic, C2/cMelting point = 580.5–583.0 K
Hall symbol: -C 2ycCu Kα radiation, λ = 1.54187 Å
a = 14.2996 (3) ÅCell parameters from 11162 reflections
b = 10.2811 (2) Åθ = 3.1–68.2°
c = 15.4306 (3) ŵ = 0.76 mm1
β = 114.523 (1)°T = 193 K
V = 2063.90 (7) Å3Platelet, brown
Z = 40.40 × 0.30 × 0.10 mm

Data collection

Rigaki R-AXIS RAPID diffractometer1892 independent reflections
Radiation source: rotating anode1690 reflections with I > 2σ(I)
graphiteRint = 0.056
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 5.5°
ω scansh = −17→17
Absorption correction: numerical (NUMABS; Higashi, 1999)k = −12→12
Tmin = 0.751, Tmax = 0.928l = −18→18
17453 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.12w = 1/[σ2(Fo2) + (0.0679P)2 + 0.6125P] where P = (Fo2 + 2Fc2)/3
1892 reflections(Δ/σ)max = 0.001
178 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.77436 (7)−0.11857 (9)0.88398 (7)0.0426 (3)
O20.62425 (7)0.07379 (8)0.72735 (6)0.0341 (3)
N10.63099 (9)0.33681 (13)1.10437 (8)0.0405 (3)
C10.62489 (9)0.26028 (13)1.02908 (8)0.0307 (3)
C20.63071 (9)0.31736 (12)0.94876 (9)0.0311 (3)
C30.62524 (9)0.24184 (12)0.87347 (8)0.0293 (3)
C40.61301 (8)0.10665 (11)0.87440 (8)0.0268 (3)
C50.60412 (9)0.05115 (13)0.95329 (9)0.0311 (3)
C60.60986 (9)0.12582 (13)1.02970 (9)0.0333 (3)
C70.61101 (8)0.02784 (12)0.79446 (8)0.0266 (3)
C80.59675 (9)−0.11834 (12)0.79669 (8)0.0278 (3)
C90.5000−0.18296 (16)0.75000.0267 (4)
C100.5000−0.32223 (16)0.75000.0302 (4)
C110.59352 (11)−0.39011 (13)0.79714 (9)0.0355 (3)
C120.68471 (11)−0.32756 (13)0.84270 (9)0.0366 (3)
C130.68596 (9)−0.19016 (13)0.84184 (9)0.0328 (3)
C140.86976 (11)−0.18638 (16)0.93136 (11)0.0495 (4)
H14A0.9248−0.12460.95740.059*
H14B0.8815−0.24150.88660.059*
H14C0.8669−0.23850.98180.059*
H10.5936 (11)−0.0400 (16)0.9542 (10)0.038 (4)*
H20.6079 (12)0.0862 (14)1.0838 (11)0.039 (4)*
H30.6425 (15)0.2952 (19)1.1606 (14)0.068 (6)*
H40.6672 (15)0.413 (2)1.1123 (13)0.065 (5)*
H50.6425 (11)0.4089 (16)0.9514 (10)0.038 (4)*
H60.6305 (11)0.2772 (14)0.8178 (10)0.034 (3)*
H70.5900 (12)−0.4824 (17)0.7944 (11)0.047 (4)*
H80.7479 (13)−0.3756 (16)0.8739 (11)0.048 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0267 (5)0.0363 (6)0.0529 (6)0.0065 (4)0.0048 (4)0.0005 (4)
O20.0404 (5)0.0317 (5)0.0299 (5)−0.0019 (4)0.0141 (4)0.0015 (4)
N10.0409 (7)0.0464 (7)0.0354 (6)−0.0038 (6)0.0170 (5)−0.0089 (5)
C10.0217 (6)0.0375 (7)0.0311 (6)0.0004 (5)0.0091 (5)−0.0033 (5)
C20.0309 (6)0.0258 (7)0.0348 (7)−0.0006 (5)0.0117 (5)−0.0005 (5)
C30.0289 (6)0.0275 (7)0.0298 (6)0.0001 (5)0.0106 (5)0.0034 (5)
C40.0221 (6)0.0258 (6)0.0291 (6)0.0002 (4)0.0074 (4)0.0010 (4)
C50.0296 (6)0.0279 (7)0.0350 (7)−0.0015 (5)0.0126 (5)0.0032 (5)
C60.0321 (6)0.0383 (7)0.0308 (6)−0.0010 (5)0.0144 (5)0.0039 (5)
C70.0198 (5)0.0271 (6)0.0281 (6)0.0002 (4)0.0053 (4)0.0016 (4)
C80.0305 (6)0.0259 (7)0.0271 (6)0.0023 (5)0.0120 (5)0.0006 (4)
C90.0329 (9)0.0249 (9)0.0241 (8)0.0000.0136 (7)0.000
C100.0407 (10)0.0258 (9)0.0278 (8)0.0000.0180 (7)0.000
C110.0520 (8)0.0235 (7)0.0332 (7)0.0058 (5)0.0200 (6)0.0030 (5)
C120.0408 (8)0.0318 (7)0.0350 (7)0.0124 (6)0.0135 (6)0.0053 (5)
C130.0319 (7)0.0319 (7)0.0321 (6)0.0033 (5)0.0108 (5)0.0004 (5)
C140.0308 (7)0.0487 (9)0.0550 (9)0.0133 (6)0.0040 (6)−0.0041 (7)

Geometric parameters (Å, °)

O1—C131.3712 (15)C6—H20.939 (15)
O1—C141.4331 (15)C7—C81.5189 (17)
O2—C71.2223 (14)C8—C131.3857 (17)
N1—C11.3756 (16)C8—C91.4308 (14)
N1—H30.92 (2)C9—C8i1.4308 (14)
N1—H40.92 (2)C9—C101.432 (2)
C1—C61.3996 (19)C10—C11i1.4132 (16)
C1—C21.4045 (17)C10—C111.4132 (16)
C2—C31.3724 (17)C11—C121.359 (2)
C2—H50.954 (16)C11—H70.950 (18)
C3—C41.4017 (17)C12—C131.4128 (19)
C3—H60.964 (14)C12—H80.965 (17)
C4—C51.3972 (16)C14—H14A0.9600
C4—C71.4662 (16)C14—H14B0.9600
C5—C61.3806 (18)C14—H14C0.9600
C5—H10.950 (16)
C13—O1—C14118.41 (11)C13—C8—C9120.11 (12)
C1—N1—H3117.1 (12)C13—C8—C7115.75 (10)
C1—N1—H4115.9 (12)C9—C8—C7123.98 (11)
H3—N1—H4113.7 (17)C8—C9—C8i124.66 (15)
N1—C1—C6121.01 (12)C8—C9—C10117.67 (8)
N1—C1—C2120.00 (12)C8i—C9—C10117.67 (8)
C6—C1—C2118.97 (11)C11i—C10—C11120.81 (17)
C3—C2—C1120.48 (12)C11i—C10—C9119.59 (8)
C3—C2—H5122.7 (8)C11—C10—C9119.59 (8)
C1—C2—H5116.7 (8)C12—C11—C10122.17 (13)
C2—C3—C4121.05 (11)C12—C11—H7121.2 (9)
C2—C3—H6122.9 (9)C10—C11—H7116.6 (10)
C4—C3—H6116.1 (9)C11—C12—C13118.78 (12)
C5—C4—C3118.09 (11)C11—C12—H8121.0 (10)
C5—C4—C7122.03 (11)C13—C12—H8120.2 (10)
C3—C4—C7119.88 (11)O1—C13—C8115.30 (11)
C6—C5—C4121.49 (12)O1—C13—C12123.02 (11)
C6—C5—H1119.3 (9)C8—C13—C12121.67 (12)
C4—C5—H1119.2 (9)O1—C14—H14A109.5
C5—C6—C1119.88 (11)O1—C14—H14B109.5
C5—C6—H2120.3 (9)H14A—C14—H14B109.5
C1—C6—H2119.7 (9)O1—C14—H14C109.5
O2—C7—C4122.92 (11)H14A—C14—H14C109.5
O2—C7—C8118.10 (10)H14B—C14—H14C109.5
C4—C7—C8118.92 (10)
N1—C1—C2—C3179.66 (11)C7—C8—C9—C8i−6.37 (8)
C6—C1—C2—C3−2.20 (18)C13—C8—C9—C10−1.54 (11)
C1—C2—C3—C40.48 (18)C7—C8—C9—C10173.63 (8)
C2—C3—C4—C51.46 (17)C8—C9—C10—C11i−178.56 (8)
C2—C3—C4—C7−177.87 (10)C8i—C9—C10—C11i1.44 (8)
C3—C4—C5—C6−1.70 (17)C8—C9—C10—C111.44 (8)
C7—C4—C5—C6177.61 (10)C8i—C9—C10—C11−178.56 (8)
C4—C5—C6—C10.00 (18)C11i—C10—C11—C12179.69 (13)
N1—C1—C6—C5−179.93 (11)C9—C10—C11—C12−0.31 (13)
C2—C1—C6—C51.96 (18)C10—C11—C12—C13−0.74 (18)
C5—C4—C7—O2−175.91 (10)C14—O1—C13—C8−179.48 (11)
C3—C4—C7—O23.40 (17)C14—O1—C13—C12−0.25 (18)
C5—C4—C7—C81.21 (16)C9—C8—C13—O1179.77 (9)
C3—C4—C7—C8−179.48 (10)C7—C8—C13—O14.22 (15)
O2—C7—C8—C1389.52 (13)C9—C8—C13—C120.53 (17)
C4—C7—C8—C13−87.74 (13)C7—C8—C13—C12−175.03 (11)
O2—C7—C8—C9−85.85 (13)C11—C12—C13—O1−178.55 (11)
C4—C7—C8—C996.90 (12)C11—C12—C13—C80.64 (19)
C13—C8—C9—C8i178.46 (11)

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N1—H4···O1ii0.93 (2)2.26 (2)3.1708 (17)169.1 (18)
C14—H14B···O2iii0.962.573.5013 (18)165
N1—H3···Cgiv0.92 (2)2.50 (2)3.3301 (13)149.8 (18)

Symmetry codes: (ii) −x+3/2, −y+1/2, −z+2; (iii) −x+3/2, y−1/2, −z+3/2; (iv) x, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2496).

References

  • Bellamy, F. D. & Ou, K. (1984). Tetrahedron Lett.25, 839–842.
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  • Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  • Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752. [PMC free article] [PubMed]
  • Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.
  • Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. [PMC free article] [PubMed]
  • Okamoto, A. & Yonezawa, N. (2009). Chem. Lett.38, 914–915.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010a). Acta Cryst. E66, o329. [PMC free article] [PubMed]
  • Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o403. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography