PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2953.
Published online 2010 October 30. doi:  10.1107/S1600536810042777
PMCID: PMC3009321

Ammonium (E)-3-(4-hy­droxy-3-meth­oxy­phen­yl)prop-2-enoate monohydrate

Abstract

In structure of the title compound ammonium ferulate monohydrate, NH4 +·C10H9O4 ·H2O, O—H(...)O and N—H(...)O hydrogen bonds link the ammonium cations, ferulate anions and water mol­ecules into a three-dimensional array. The ferulate anion is approximately planar, with a maximum deviation of 0.307 (2) Å.

Related literature

For the biological activity of ferulic acid, see: Hirabayashi et al. (1995 [triangle]); Liyama et al. (1994 [triangle]); Nomura et al. (2003 [triangle]); Ogiwara et al. (2002 [triangle]); Ou et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2953-scheme1.jpg

Experimental

Crystal data

  • NH4 +·C10H9O4 ·H2O
  • M r = 229.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2953-efi1.jpg
  • a = 8.6613 (19) Å
  • b = 8.3282 (18) Å
  • c = 16.457 (4) Å
  • β = 100.525 (3)°
  • V = 1167.1 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 296 K
  • 0.30 × 0.27 × 0.26 mm

Data collection

  • Bruker APEXII diffractometer
  • 5831 measured reflections
  • 2090 independent reflections
  • 1348 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.111
  • S = 1.01
  • 2090 reflections
  • 166 parameters
  • 7 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810042777/gk2311sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042777/gk2311Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge South China Normal University for supporting this work.

supplementary crystallographic information

Comment

3-(4-Hydroxy-3-methoxyphenyl)-2-propenoic acid, also known as ferulic acid, is one of the main endogenous phenolic acids in plant kingdom (Liyama et al., 1994). Attention was paid to the structural modifications of ferulic acid owing to its extensive bioactivities including anti-platelet aggregation, anti-oxidation, anti-inflammation, anti-tumor, anti-mutagenicity, antibiosis and immunity enchancement (Hirabayashi et al., 1995; Ogiwara et al., 2002). A series of ferulic acid derivatives were designed and synthesized, such as their salts, esters, ethers and amides, and some of them show the better bioactivities than those of ferulic acid (Nomura et al., 2003; Ou et al., 2003). The molecular and crystal structure of the title compound is presented in this article.

In the asymmetric unit of the title compound, illustrated in Fig. 1, there are an ammonium cation, one singly deprotonated 3-(4-hydroxy-3-methoxyphenyl)-2-propenoate anion, and one water molecule. The molecules are self-assembled by various O—H···O and N—H···O hydrogen bonds (Table 1 and Fig. 2), resulting in the formation of a three-dimensional supramolecular network.

Experimental

A mixture of ferulic acid (0.388 g, 2 mmol) and ammonia (0.15 ml, 2 mmol) was stirred with methanol (20 ml) for 0.5 h at room temperature. After several days colourless block-like crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of the solution.

Refinement

The H atoms of water molecule and ammonium cation were found from difference Fourier maps and refined isotropically with a restraint of O—H = 0.87 (2) Å and H1W···H2W = 1.39 (2) Å for water molecule, N—H = 0.87 (2) Å for ammonium cation, and Uiso(H) = 1.5 Ueq(O, N). All other H atoms were positioned geometrically and refined as riding, with C—H = 0.93–0.96 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C, O).

Figures

Fig. 1.
The molecular structure showing the atomic-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal packing showing the hydrogen bonding interactions as broken lines.

Crystal data

NH4+·C10H9O4·H2OF(000) = 488
Mr = 229.23Dx = 1.305 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1012 reflections
a = 8.6613 (19) Åθ = 2.5–21.0°
b = 8.3282 (18) ŵ = 0.11 mm1
c = 16.457 (4) ÅT = 296 K
β = 100.525 (3)°Block, colourless
V = 1167.1 (5) Å30.30 × 0.27 × 0.26 mm
Z = 4

Data collection

Bruker APEXII diffractometer1348 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
graphiteθmax = 25.2°, θmin = 2.5°
[var phi] and ω scanh = −9→10
5831 measured reflectionsk = −9→9
2090 independent reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111w = 1/[σ2(Fo2) + (0.0482P)2 + 0.106P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2090 reflectionsΔρmax = 0.18 e Å3
166 parametersΔρmin = −0.18 e Å3
7 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.9208 (2)−0.0647 (2)0.33845 (13)0.0374 (5)
C20.9382 (2)0.0503 (2)0.27793 (12)0.0361 (5)
C30.8765 (2)0.2015 (2)0.28226 (13)0.0413 (5)
H30.88840.27820.24280.050*
C40.7969 (2)0.2398 (3)0.34519 (14)0.0432 (6)
H40.75470.34210.34700.052*
C50.7786 (2)0.1292 (2)0.40548 (13)0.0387 (5)
C60.8419 (2)−0.0247 (2)0.40114 (13)0.0402 (5)
H60.8306−0.10070.44100.048*
C70.9605 (3)−0.3375 (3)0.38312 (16)0.0617 (7)
H7A1.0047−0.30810.43890.093*
H7B1.0094−0.43420.36870.093*
H7C0.8496−0.35500.37850.093*
C80.6979 (2)0.1798 (3)0.47158 (13)0.0438 (6)
H80.65290.28150.46500.053*
C90.6790 (2)0.1034 (3)0.53912 (13)0.0438 (6)
H90.7113−0.00310.54540.053*
C100.6093 (3)0.1780 (3)0.60560 (14)0.0413 (5)
O10.98669 (18)−0.21136 (16)0.32848 (9)0.0492 (4)
O21.01519 (18)0.00231 (17)0.21705 (9)0.0479 (4)
H21.01250.07440.18290.072*
O30.5464 (2)0.31626 (18)0.59297 (9)0.0557 (5)
O40.61918 (18)0.10581 (17)0.67298 (9)0.0503 (4)
N10.6808 (3)0.7821 (2)0.69610 (14)0.0506 (5)
H100.674 (3)0.894 (2)0.6905 (15)0.076*
H110.595 (2)0.740 (3)0.7154 (16)0.076*
H120.685 (3)0.733 (3)0.6460 (12)0.076*
H130.764 (2)0.748 (3)0.7335 (14)0.076*
O1W0.3143 (2)0.3867 (2)0.45407 (11)0.0698 (6)
H1W0.381 (3)0.358 (3)0.4970 (14)0.105*
H2W0.340 (3)0.481 (2)0.4400 (18)0.105*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0408 (12)0.0330 (12)0.0394 (13)−0.0007 (9)0.0098 (10)−0.0022 (9)
C20.0411 (12)0.0403 (12)0.0302 (12)−0.0040 (10)0.0150 (10)−0.0019 (9)
C30.0522 (14)0.0365 (12)0.0379 (13)0.0032 (10)0.0157 (11)0.0069 (10)
C40.0514 (14)0.0374 (12)0.0436 (14)0.0050 (10)0.0160 (11)0.0022 (10)
C50.0458 (13)0.0380 (12)0.0351 (12)0.0004 (10)0.0146 (10)−0.0029 (10)
C60.0506 (13)0.0395 (12)0.0325 (12)−0.0025 (10)0.0128 (10)0.0036 (10)
C70.0783 (19)0.0395 (14)0.0704 (19)0.0025 (12)0.0220 (15)0.0129 (12)
C80.0524 (14)0.0392 (12)0.0431 (14)0.0014 (10)0.0171 (11)−0.0034 (10)
C90.0572 (14)0.0362 (12)0.0414 (14)0.0010 (11)0.0182 (11)−0.0016 (10)
C100.0491 (14)0.0399 (13)0.0374 (13)−0.0037 (11)0.0143 (11)−0.0042 (11)
O10.0673 (10)0.0356 (9)0.0503 (10)0.0052 (7)0.0253 (8)0.0039 (7)
O20.0635 (10)0.0432 (9)0.0443 (10)0.0073 (8)0.0290 (8)0.0043 (7)
O30.0868 (13)0.0443 (10)0.0416 (10)0.0147 (8)0.0259 (9)0.0026 (7)
O40.0731 (11)0.0449 (9)0.0375 (9)0.0043 (8)0.0223 (8)0.0025 (7)
N10.0660 (15)0.0430 (12)0.0436 (13)−0.0077 (11)0.0120 (11)0.0037 (10)
O1W0.0854 (14)0.0635 (12)0.0582 (13)0.0016 (11)0.0068 (10)−0.0008 (10)

Geometric parameters (Å, °)

C1—O11.371 (2)C7—H7C0.9600
C1—C61.378 (3)C8—C91.317 (3)
C1—C21.409 (3)C8—H80.9300
C2—O21.361 (2)C9—C101.480 (3)
C2—C31.375 (3)C9—H90.9300
C3—C41.383 (3)C10—O41.250 (2)
C3—H30.9300C10—O31.274 (2)
C4—C51.384 (3)O2—H20.8200
C4—H40.9300N1—H100.942 (17)
C5—C61.401 (3)N1—H110.927 (17)
C5—C81.458 (3)N1—H120.926 (17)
C6—H60.9300N1—H130.903 (17)
C7—O11.428 (2)O1W—H1W0.863 (16)
C7—H7A0.9600O1W—H2W0.863 (16)
C7—H7B0.9600
O1—C1—C6125.42 (19)O1—C7—H7C109.5
O1—C1—C2114.84 (18)H7A—C7—H7C109.5
C6—C1—C2119.74 (19)H7B—C7—H7C109.5
O2—C2—C3123.65 (18)C9—C8—C5129.8 (2)
O2—C2—C1116.80 (18)C9—C8—H8115.1
C3—C2—C1119.54 (18)C5—C8—H8115.1
C2—C3—C4120.12 (19)C8—C9—C10123.5 (2)
C2—C3—H3119.9C8—C9—H9118.3
C4—C3—H3119.9C10—C9—H9118.3
C3—C4—C5121.45 (19)O4—C10—O3122.48 (19)
C3—C4—H4119.3O4—C10—C9118.9 (2)
C5—C4—H4119.3O3—C10—C9118.6 (2)
C4—C5—C6118.34 (19)C1—O1—C7117.54 (17)
C4—C5—C8118.43 (19)C2—O2—H2109.5
C6—C5—C8123.21 (19)H10—N1—H11111 (2)
C1—C6—C5120.79 (19)H10—N1—H12111 (2)
C1—C6—H6119.6H11—N1—H12108 (2)
C5—C6—H6119.6H10—N1—H13114 (2)
O1—C7—H7A109.5H11—N1—H13104 (2)
O1—C7—H7B109.5H12—N1—H13108 (2)
H7A—C7—H7B109.5H1W—O1W—H2W108 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H2W···O3i0.86 (2)2.07 (2)2.918 (2)167 (3)
O1W—H1W···O30.86 (2)1.96 (2)2.817 (2)173 (3)
N1—H13···O4ii0.90 (2)2.06 (2)2.904 (3)156 (2)
N1—H12···O1Wi0.93 (2)1.93 (2)2.850 (3)175 (2)
N1—H11···O1iii0.93 (2)2.25 (2)3.043 (3)144 (2)
N1—H11···O2iii0.93 (2)2.14 (2)2.823 (2)130 (2)
N1—H10···O4iv0.94 (2)1.83 (2)2.761 (3)169 (2)
O2—H2···O3v0.821.812.594 (2)160

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+3/2, y+1/2, −z+3/2; (iii) x−1/2, −y+1/2, z+1/2; (iv) x, y+1, z; (v) x+1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2311).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hirabayashi, T., Ochiai, H., Sakai, S., Nakajima, K. & Terasawa, K. (1995). Planta Med.61, 221–226. [PubMed]
  • Liyama, K., Lam, T. B. T. & Stone, B. A. (1994). Plant Physiol.104, 315–320. [PubMed]
  • Nomura, E., Kashiwada, A., Hosoda, A., Nakamura, K., Morishita, H., Tsuno, T. & Taniguchi, H. (2003). Bioorg. Med. Chem.11, 3807–3813. [PubMed]
  • Ogiwara, T., Satoh, K., Kadoma, Y., Murakami, Y., Unten, S., Atsumi, T., Sakagami, H. & Fujisawa, S. (2002). Anticancer Res.22, 2711–2717. [PubMed]
  • Ou, L., Kong, L. Y., Zhang, X. M. & Niwa, M. (2003). Biol. Pharm. Bull.26, 1511–1516. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography