PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1400.
Published online 2010 October 13. doi:  10.1107/S1600536810040110
PMCID: PMC3009319

Iodidobis(η5-penta­methyl­cyclo­penta­dien­yl)titanium(III)

Abstract

In the title complex mol­ecule, [Ti(C10H15)2I], the paramagnetic Ti(III) atom is coordinated by two penta­methyl­cyclo­penta­dienyl (Cp*) ligands and one iodide ligand. The two Cp* ligands are in a staggered orientation. The coordination geometry at the titanium atom can be described as distorted trigonal-planar.

Related literature

For related bis­(η 5-penta­methyl­cyclo­penta­dien­yl)titanium(III) halides, Cp*2TiX, see: Pattiasina et al. (1987 [triangle]) (X = Cl); Herzog et al. (1994 [triangle]) (X = F). For the mol­ecular structure of Cp*2TiF, see: Lukens et al. (1996 [triangle]). For bis­(η 5-tetra­methyl­cyclo­penta­dien­yl)titanium(III) halides, see: Troyanov et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1400-scheme1.jpg

Experimental

Crystal data

  • [Ti(C10H15)2I]
  • M r = 445.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1400-efi1.jpg
  • a = 8.5513 (3) Å
  • b = 14.1353 (5) Å
  • c = 16.9547 (6) Å
  • β = 103.158 (3)°
  • V = 1995.60 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.97 mm−1
  • T = 150 K
  • 0.60 × 0.27 × 0.20 mm

Data collection

  • Stoe IPDS II diffractometer
  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005 [triangle]) T min = 0.451, T max = 0.875
  • 23992 measured reflections
  • 5395 independent reflections
  • 3921 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.052
  • S = 0.86
  • 5395 reflections
  • 209 parameters
  • H-atom parameters constrained
  • Δρmax = 0.65 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810040110/is2610sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040110/is2610Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank our technical and analytical staff for assistance. This work was supported by the BMBF.

supplementary crystallographic information

Comment

The title compound, Cp*2TiI, was first synthesized by Pattiasina et al. (1987) via salt metathesis of Cp*2TiCl. Using Cp*2TiF as starting material we obtained Cp*2TiI in high yields and single crystals by recrystallization from n-pentane at -78 °C. The X-ray crystal structure analysis of Cp*2TiI confirms its monomeric structure probably due to the steric demand of the pentamethylcyclopentadienyl ligands. The trivalent paramagnetic titanium center is coordinated by one iodide ligand and by two Cp*-ligands in a η5-coordination mode. The Cp*-ligands are in a staggered orientation. The coordination geometry at the titanium is distorted trigonal planar (CE1—Ti1—CE2 = 142.4, CE1—Ti1—I1 = 109.2 and CE2—Ti1—I1 = 108.4°; CE1 = centroid of C1—C5 and CE2 = centroid of C11—C15). A similar distortion is observed for the known bis(η5-pentamethylcyclopentadienyl)-titanium(III) halides Cp*2TiF (Herzog et al., 1994) and Cp*2TiCl (Pattiasina et al., 1987). The Ti1—I1 bond length of 2.7508 (3) Å is close to that in the related complex (η5-C5HMe4)2TiI [Ti1—I1 = 2.759 (2) Å] (Troyanov et al., 1993).

Experimental

A mixture of Cp*2TiF (0.350 g, 1.04 mmol) and LiI (0.223 g, 1.67 mmol) was suspended in 25 ml diethyl ether and stirred at room temperature overnight. The solvent was removed in vacuo and the dark green residue was extracted with n-hexane. The filtrate was concentrated to dryness in vacuo and the solid residue was recrystallized from n-pentane to give dark blue-green needles. Yield: 0.431 g (0.97 mmol, 93%).

Refinement

All H atoms were placed in idealized positions with d(C—H) = 0.98 and refined using a riding model, with Uiso(H) fixed at 1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound showing the atom-labelling scheme. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn at the 30% probability level.

Crystal data

[Ti(C10H15)2I]F(000) = 900
Mr = 445.24Dx = 1.482 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5078 reflections
a = 8.5513 (3) Åθ = 1.8–29.6°
b = 14.1353 (5) ŵ = 1.97 mm1
c = 16.9547 (6) ÅT = 150 K
β = 103.158 (3)°Needle, dark blue-green
V = 1995.60 (12) Å30.60 × 0.27 × 0.20 mm
Z = 4

Data collection

Stoe IPDS II diffractometer5395 independent reflections
Radiation source: fine-focus sealed tube3921 reflections with I > 2σ(I)
graphiteRint = 0.036
ω scansθmax = 29.2°, θmin = 1.9°
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005)h = −11→11
Tmin = 0.451, Tmax = 0.875k = −19→19
23992 measured reflectionsl = −22→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 0.86w = 1/[σ2(Fo2) + (0.0282P)2] where P = (Fo2 + 2Fc2)/3
5395 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = −0.43 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1702 (2)0.69392 (15)0.10016 (11)0.0231 (4)
C20.1239 (2)0.78575 (13)0.07150 (11)0.0200 (4)
C30.2412 (2)0.82110 (13)0.03163 (11)0.0207 (4)
C40.3572 (2)0.74932 (15)0.03365 (12)0.0239 (4)
C50.3119 (2)0.67040 (14)0.07461 (13)0.0253 (4)
C60.0717 (3)0.62684 (17)0.13752 (15)0.0376 (5)
H6A0.00900.66270.16910.056*
H6B0.14300.58260.17320.056*
H6C−0.00120.59140.09470.056*
C7−0.0419 (2)0.82456 (16)0.06611 (14)0.0310 (5)
H7A−0.12020.78680.02760.047*
H7B−0.04640.89040.04760.047*
H7C−0.06730.82180.11960.047*
C80.2339 (3)0.91097 (16)−0.01645 (13)0.0309 (5)
H8A0.34130.9391−0.00710.046*
H8B0.16010.95550.00060.046*
H8C0.19540.8969−0.07420.046*
C90.4955 (3)0.7556 (2)−0.00683 (16)0.0401 (6)
H9A0.45660.7465−0.06530.060*
H9B0.57450.70650.01490.060*
H9C0.54600.81800.00350.060*
C100.3827 (3)0.57250 (16)0.07894 (18)0.0431 (6)
H10A0.31710.53280.03670.065*
H10B0.38480.54490.13220.065*
H10C0.49240.57610.07080.065*
C110.2539 (2)0.87291 (14)0.26881 (12)0.0220 (4)
C120.2530 (2)0.94111 (14)0.20774 (12)0.0218 (4)
C130.4142 (2)0.96209 (13)0.20569 (12)0.0223 (4)
C140.5137 (2)0.91117 (14)0.26920 (13)0.0246 (4)
C150.4160 (2)0.85547 (14)0.30742 (12)0.0242 (4)
C160.1122 (3)0.83399 (18)0.29660 (16)0.0381 (6)
H16A0.09460.87130.34250.057*
H16B0.13300.76790.31330.057*
H16C0.01640.83730.25210.057*
C170.1126 (3)1.00169 (16)0.16858 (16)0.0369 (5)
H17A0.01250.96930.17110.055*
H17B0.11511.01300.11190.055*
H17C0.11851.06230.19720.055*
C180.4682 (3)1.03754 (16)0.15589 (15)0.0381 (5)
H18A0.50411.09300.18990.057*
H18B0.37881.05540.11120.057*
H18C0.55721.01360.13400.057*
C190.6924 (2)0.92654 (18)0.29768 (18)0.0445 (6)
H19A0.74120.92940.25070.067*
H19B0.73970.87410.33290.067*
H19C0.71220.98610.32780.067*
C200.4730 (3)0.79563 (19)0.38119 (14)0.0437 (6)
H20A0.58270.77390.38320.065*
H20B0.40200.74080.37890.065*
H20C0.47160.83300.42970.065*
I10.651593 (15)0.699360 (11)0.219599 (10)0.03611 (5)
Ti10.37146 (3)0.80034 (2)0.169855 (19)0.01689 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0265 (8)0.0231 (9)0.0196 (9)−0.0047 (8)0.0047 (7)−0.0004 (9)
C20.0195 (7)0.0234 (10)0.0167 (9)−0.0002 (7)0.0032 (6)−0.0020 (7)
C30.0237 (8)0.0228 (10)0.0146 (8)−0.0018 (7)0.0023 (7)0.0009 (7)
C40.0244 (9)0.0291 (11)0.0195 (10)0.0003 (7)0.0077 (7)−0.0042 (8)
C50.0296 (9)0.0219 (10)0.0235 (10)0.0026 (7)0.0039 (8)−0.0041 (8)
C60.0409 (12)0.0350 (13)0.0372 (14)−0.0143 (10)0.0098 (10)0.0050 (10)
C70.0192 (8)0.0413 (13)0.0307 (12)0.0032 (8)0.0018 (8)−0.0043 (9)
C80.0388 (11)0.0311 (11)0.0209 (11)−0.0015 (9)0.0031 (8)0.0079 (9)
C90.0353 (11)0.0577 (16)0.0329 (13)0.0027 (11)0.0195 (10)−0.0042 (12)
C100.0495 (13)0.0252 (12)0.0514 (16)0.0078 (10)0.0048 (12)−0.0082 (11)
C110.0245 (8)0.0241 (10)0.0196 (10)−0.0020 (7)0.0096 (7)−0.0052 (8)
C120.0240 (8)0.0210 (9)0.0192 (10)0.0044 (7)0.0029 (7)−0.0038 (8)
C130.0298 (9)0.0175 (9)0.0211 (10)−0.0025 (7)0.0086 (8)−0.0017 (8)
C140.0215 (8)0.0242 (10)0.0269 (11)−0.0005 (7)0.0030 (7)−0.0053 (8)
C150.0324 (10)0.0217 (10)0.0169 (10)0.0020 (8)0.0022 (8)0.0003 (8)
C160.0411 (12)0.0407 (13)0.0405 (14)−0.0130 (10)0.0260 (11)−0.0125 (11)
C170.0380 (11)0.0302 (12)0.0378 (14)0.0153 (10)−0.0013 (10)−0.0073 (10)
C180.0557 (14)0.0270 (12)0.0348 (13)−0.0109 (10)0.0173 (11)0.0016 (10)
C190.0242 (10)0.0397 (14)0.0631 (18)−0.0047 (9)−0.0033 (10)−0.0152 (13)
C200.0665 (15)0.0384 (13)0.0216 (11)0.0077 (12)0.0008 (10)0.0085 (11)
I10.02397 (6)0.03285 (8)0.04797 (10)0.01242 (6)0.00080 (5)−0.00121 (8)
Ti10.01598 (12)0.01732 (15)0.01722 (15)0.00272 (12)0.00345 (11)0.00109 (14)

Geometric parameters (Å, °)

C1—C21.411 (3)C11—C121.414 (3)
C1—C51.416 (3)C11—C161.501 (3)
C1—C61.501 (3)C11—Ti12.3760 (18)
C1—Ti12.3864 (19)C12—C131.417 (3)
C2—C31.422 (2)C12—C171.501 (3)
C2—C71.504 (2)C12—Ti12.3862 (19)
C2—Ti12.3869 (17)C13—C141.409 (3)
C3—C41.413 (3)C13—C181.497 (3)
C3—C81.503 (3)C13—Ti12.3726 (19)
C3—Ti12.3729 (19)C14—C151.409 (3)
C4—C51.414 (3)C14—C191.509 (3)
C4—C91.500 (3)C14—Ti12.416 (2)
C4—Ti12.396 (2)C15—C201.497 (3)
C5—C101.506 (3)C15—Ti12.406 (2)
C5—Ti12.422 (2)C16—H16A0.9800
C6—H6A0.9800C16—H16B0.9800
C6—H6B0.9800C16—H16C0.9800
C6—H6C0.9800C17—H17A0.9800
C7—H7A0.9800C17—H17B0.9800
C7—H7B0.9800C17—H17C0.9800
C7—H7C0.9800C18—H18A0.9800
C8—H8A0.9800C18—H18B0.9800
C8—H8B0.9800C18—H18C0.9800
C8—H8C0.9800C19—H19A0.9800
C9—H9A0.9800C19—H19B0.9800
C9—H9B0.9800C19—H19C0.9800
C9—H9C0.9800C20—H20A0.9800
C10—H10A0.9800C20—H20B0.9800
C10—H10B0.9800C20—H20C0.9800
C10—H10C0.9800I1—Ti12.7508 (3)
C11—C151.413 (3)
C2—C1—C5107.64 (16)C11—C15—Ti171.66 (11)
C2—C1—C6125.89 (18)C20—C15—Ti1125.22 (15)
C5—C1—C6125.6 (2)C11—C16—H16A109.5
C2—C1—Ti172.83 (11)C11—C16—H16B109.5
C5—C1—Ti174.25 (11)H16A—C16—H16B109.5
C6—C1—Ti1126.88 (14)C11—C16—H16C109.5
C1—C2—C3108.31 (15)H16A—C16—H16C109.5
C1—C2—C7122.90 (17)H16B—C16—H16C109.5
C3—C2—C7126.92 (18)C12—C17—H17A109.5
C1—C2—Ti172.79 (10)C12—C17—H17B109.5
C3—C2—Ti172.08 (10)H17A—C17—H17B109.5
C7—C2—Ti1133.24 (13)C12—C17—H17C109.5
C4—C3—C2107.64 (17)H17A—C17—H17C109.5
C4—C3—C8124.22 (18)H17B—C17—H17C109.5
C2—C3—C8127.44 (17)C13—C18—H18A109.5
C4—C3—Ti173.64 (11)C13—C18—H18B109.5
C2—C3—Ti173.16 (11)H18A—C18—H18B109.5
C8—C3—Ti1126.33 (13)C13—C18—H18C109.5
C3—C4—C5108.02 (17)H18A—C18—H18C109.5
C3—C4—C9124.64 (19)H18B—C18—H18C109.5
C5—C4—C9127.19 (19)C14—C19—H19A109.5
C3—C4—Ti171.88 (11)C14—C19—H19B109.5
C5—C4—Ti173.95 (12)H19A—C19—H19B109.5
C9—C4—Ti1123.42 (14)C14—C19—H19C109.5
C4—C5—C1108.31 (17)H19A—C19—H19C109.5
C4—C5—C10126.7 (2)H19B—C19—H19C109.5
C1—C5—C10124.3 (2)C15—C20—H20A109.5
C4—C5—Ti171.92 (11)C15—C20—H20B109.5
C1—C5—Ti171.50 (11)H20A—C20—H20B109.5
C10—C5—Ti1130.03 (16)C15—C20—H20C109.5
C1—C6—H6A109.5H20A—C20—H20C109.5
C1—C6—H6B109.5H20B—C20—H20C109.5
H6A—C6—H6B109.5C13—Ti1—C398.28 (7)
C1—C6—H6C109.5C13—Ti1—C1157.88 (6)
H6A—C6—H6C109.5C3—Ti1—C11117.72 (7)
H6B—C6—H6C109.5C13—Ti1—C1234.66 (6)
C2—C7—H7A109.5C3—Ti1—C1291.73 (7)
C2—C7—H7B109.5C11—Ti1—C1234.53 (7)
H7A—C7—H7B109.5C13—Ti1—C1141.80 (7)
C2—C7—H7C109.5C3—Ti1—C157.69 (6)
H7A—C7—H7C109.5C11—Ti1—C1104.38 (6)
H7B—C7—H7C109.5C12—Ti1—C1110.89 (7)
C3—C8—H8A109.5C13—Ti1—C2108.81 (7)
C3—C8—H8B109.5C3—Ti1—C234.76 (6)
H8A—C8—H8B109.5C11—Ti1—C294.60 (6)
C3—C8—H8C109.5C12—Ti1—C284.08 (6)
H8A—C8—H8C109.5C1—Ti1—C234.38 (6)
H8B—C8—H8C109.5C13—Ti1—C4120.53 (7)
C4—C9—H9A109.5C3—Ti1—C434.48 (7)
C4—C9—H9B109.5C11—Ti1—C4150.89 (7)
H9A—C9—H9B109.5C12—Ti1—C4125.37 (7)
C4—C9—H9C109.5C1—Ti1—C457.33 (7)
H9A—C9—H9C109.5C2—Ti1—C457.18 (6)
H9B—C9—H9C109.5C13—Ti1—C1557.21 (7)
C5—C10—H10A109.5C3—Ti1—C15148.49 (7)
C5—C10—H10B109.5C11—Ti1—C1534.37 (6)
H10A—C10—H10B109.5C12—Ti1—C1556.77 (7)
C5—C10—H10C109.5C1—Ti1—C15128.41 (7)
H10A—C10—H10C109.5C2—Ti1—C15128.66 (6)
H10B—C10—H10C109.5C4—Ti1—C15173.78 (7)
C15—C11—C12107.42 (16)C13—Ti1—C1434.20 (7)
C15—C11—C16124.58 (19)C3—Ti1—C14131.07 (7)
C12—C11—C16127.57 (19)C11—Ti1—C1456.95 (6)
C15—C11—Ti173.97 (11)C12—Ti1—C1456.55 (6)
C12—C11—Ti173.13 (11)C1—Ti1—C14161.04 (7)
C16—C11—Ti1124.40 (14)C2—Ti1—C14140.24 (6)
C11—C12—C13108.52 (16)C4—Ti1—C14140.74 (7)
C11—C12—C17125.67 (18)C15—Ti1—C1433.98 (7)
C13—C12—C17123.65 (19)C13—Ti1—C5153.93 (7)
C11—C12—Ti172.34 (11)C3—Ti1—C556.98 (7)
C13—C12—Ti172.15 (11)C11—Ti1—C5137.70 (7)
C17—C12—Ti1134.62 (14)C12—Ti1—C5140.73 (7)
C14—C13—C12107.21 (17)C1—Ti1—C534.24 (6)
C14—C13—C18125.77 (18)C2—Ti1—C556.64 (6)
C12—C13—C18126.13 (19)C4—Ti1—C534.13 (7)
C14—C13—Ti174.60 (11)C15—Ti1—C5148.74 (7)
C12—C13—Ti173.20 (11)C14—Ti1—C5162.29 (6)
C18—C13—Ti1126.25 (15)C13—Ti1—I1110.43 (5)
C13—C14—C15108.57 (16)C3—Ti1—I1123.17 (5)
C13—C14—C19124.2 (2)C11—Ti1—I1119.10 (5)
C15—C14—C19126.6 (2)C12—Ti1—I1138.03 (5)
C13—C14—Ti171.20 (11)C1—Ti1—I1107.72 (5)
C15—C14—Ti172.60 (11)C2—Ti1—I1137.84 (5)
C19—C14—Ti1128.94 (15)C4—Ti1—I189.38 (5)
C14—C15—C11108.14 (17)C15—Ti1—I186.35 (5)
C14—C15—C20125.85 (19)C14—Ti1—I181.82 (5)
C11—C15—C20125.8 (2)C5—Ti1—I181.21 (5)
C14—C15—Ti173.42 (12)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2610).

References

  • Herzog, A., Liu, F.-Q., Roesky, H. W., Demsar, A., Keller, K., Noltemeyer, M. & Pauer, F. (1994). Organometallics, 13, 1251–1256.
  • Lukens, W. W. Jr, Smith, M. R. III & Andersen, R. A. (1996). J. Am. Chem. Soc.118, 1719–1728.
  • Pattiasina, J. W., Heeres, H. J., van Bolhuis, F., Meetsma, A. Teuben, J. H. & Spek, A. L. (1987). Organometallics, 6, 1004–1010.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA Stoe & Cie, Darmstadt, Germany.
  • Troyanov, S. I., Rybakov, V. B., Thewalt, U., Varga, V. & Mach, K. (1993). J. Organomet. Chem.447, 221–225.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography