PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1433.
Published online 2010 October 23. doi:  10.1107/S1600536810041838
PMCID: PMC3009318

catena-Poly[[[pentaaquaeuropium(III)]-μ-5-sulfonatoisophthalato-κ4 O 1,O 1′:O 3,O 3′] 4,4’-bipyridine N,N′-dioxide hemisolvate trihydrate]

Abstract

In the crystal structure of the title compound, {[Eu(C8H3O7S)(H2O)5]·0.5C10H8N2O2·3H2O}n, the EuIII coordination polymer displays a ribbon motif as the 5-sulfoisopthalate anion uses one of carboxyl –CO2 units to chelate to a Eu atom and the other to bind to other two Eu atoms; the sulfonyl –SO3 unit is not involved in coordination. Adjacent ribbons are linked by O—H(...)O hydrogen bonds, generating a three-dimensional network. The 4,4′-bipyridine-N,N′-dioxide mol­ecule lies on an inversion centre and is hydrogen-bonded to the complex network. The coordination geometry of the Eu atom is a monocapped square anti­prism.

Related literature

For a related structure, see: Hu et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1433-scheme1.jpg

Experimental

Crystal data

  • [Eu(C8H3O7S)(H2O)5]·0.5C10H8N2O2·3H2O
  • M r = 633.34
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1433-efi1.jpg
  • a = 10.7800 (4) Å
  • b = 10.8978 (3) Å
  • c = 11.4048 (3) Å
  • α = 89.383 (2)°
  • β = 62.989 (1)°
  • γ = 62.678 (6)°
  • V = 1026.90 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.24 mm−1
  • T = 293 K
  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.631, T max = 1.000
  • 10108 measured reflections
  • 4658 independent reflections
  • 4509 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.091
  • S = 1.20
  • 4658 reflections
  • 289 parameters
  • H-atom parameters constrained
  • Δρmax = 3.40 e Å−3
  • Δρmin = −1.13 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810041838/xu5055sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041838/xu5055Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Guangzhou University of Chinese Medicine and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

In the crystal structure of pentaqua(5-sulfoisophthalato)europium monohydrate sesqui-4,4'-bipyridine, the 5-sulfoisophthalate trianion O,O'-chelates to two metal atoms to furnish a polymeric chain structure. The chains are linked by hydrogen bonds into a three-dimensional network, and the N-heterocycles occupy the cavities of the network. The geometry of the metal atom is a monocapped square-antiprism (Hu et al., 2005). A similar hydrothermal synthesis with 4,4'-bipyridine N-oxide in place of 4,4'-bipyridine affords the corresponding co-crystal, but the co-crystal is a trihydrated1:0.5 co-crystal. In Eu(H2O)5(C8H3O7S).3H2O.0.5C10H8N2O2 (Scheme I), the 5-sulfoisopthalate group uses one of carboxyl –CO2 units to chelate to a Eu(III) atom and uses the other to bind to two other metal atoms; the sulfonyl –SO3 unit is not involved in coordination (Fig. 1). The geometry of the europium atom is a monocapped square-antiprism (Fig. 2). Adjacent ribbons (Fig. 3) are linked by O–H···O hydrogen bonds to generate a three-dimensional network (Table 3). The 4,4'-bipyridine N-oxide molecule, which lies on a center-of-inversion, is hydrogen-bonded to the network.

Experimental

Europium nitrate hexahydrate (0.22 g, 0.5 mmol), monosodium 5-sulfoisophthalate (0.16 g, 0.5 mmol) and 4,4'-bipyridine-N,N'-dioxide (0.095 g, 0.5 mmol) were placed in a 25-ml Teflon-lined, stainless-steel Parr bomb along with water (15 ml). The bomb was heated to 433 K for 72 h. It was then cooled down to room temperature at a rate of 5 K an hour. Colorless crystals were collected and washed with water (0.195 g, yield 55% based on Eu). The product is stable in air and and is insoluble in water and common organic solvents. CH&N elemental analysis. Calc. for C18H25N2EuO16S (709.42): C 34.45, H 3.55, N 3.97%. Found: C 34.24, H 3.50, N 4.08%.

Refinement

Carbon-bound hydrogen atoms were placed in calculated positions (C–H 0.93 Å, Uiso(H) 1.2 times Ueq(C), and were included in the refinement in the riding model approximation. The water H-atoms were placed placed in calculated positions (O–H 0.84 Å and H···H 1.37 Å) on the basis of hydrogen bonding; their temperature factors were tied by a factor of 1.5.

The final difference Fourier map had a peak and a hole in the vicinity of Eu1, but was otherwise featureless. Attempts to decrease their magnitudes by lowering the 2-theta limit did not lower these values, and the structure did not exhibit any signs of twinning.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of a portion of the polymeric structure of Eu(H2O)5(C8H3O7S).3H2O.0.5C10H8N2O2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The 4,4'-bipyridine N-oxide molecule lies on a ...
Fig. 2.
Nine-coordinate geometry of Eu.
Fig. 3.
Ribbon structure.

Crystal data

[Eu(C8H3O7S)(H2O)5]·0.5C10H8N2O2·3H2OZ = 2
Mr = 633.34F(000) = 630
Triclinic, P1Dx = 2.048 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.7800 (4) ÅCell parameters from 9807 reflections
b = 10.8978 (3) Åθ = 3.5–27.5°
c = 11.4048 (3) ŵ = 3.24 mm1
α = 89.383 (2)°T = 293 K
β = 62.989 (1)°Prism, colorless
γ = 62.678 (6)°0.25 × 0.20 × 0.15 mm
V = 1026.90 (9) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer4658 independent reflections
Radiation source: fine-focus sealed tube4509 reflections with I > 2σ(I)
graphiteRint = 0.033
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.5°
ω scansh = −13→13
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −14→14
Tmin = 0.631, Tmax = 1.000l = −14→14
10108 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.20w = 1/[σ2(Fo2) + (0.0569P)2 + 0.4859P] where P = (Fo2 + 2Fc2)/3
4658 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 3.40 e Å3
0 restraintsΔρmin = −1.13 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Eu10.222361 (16)0.944055 (13)0.073400 (13)0.01756 (8)
S10.84263 (11)0.67200 (9)0.32120 (9)0.02471 (18)
O10.4314 (3)0.8569 (3)0.1429 (3)0.0305 (6)
O20.3992 (3)0.6830 (3)0.0953 (3)0.0285 (5)
O30.8412 (4)0.1844 (3)0.0243 (3)0.0346 (6)
O40.9706 (3)0.1556 (3)0.1368 (3)0.0295 (6)
O51.0036 (4)0.6411 (4)0.2226 (3)0.0418 (7)
O60.8400 (4)0.6030 (3)0.4321 (3)0.0396 (7)
O70.7229 (4)0.8236 (3)0.3736 (3)0.0375 (6)
O80.1731 (4)0.9846 (3)0.4955 (3)0.0329 (6)
O1W0.1051 (3)1.0804 (3)0.3032 (3)0.0310 (6)
H110.14531.03180.34740.047*
H120.08011.16500.32580.047*
O2W0.3042 (4)1.1235 (3)0.0498 (4)0.0410 (7)
H210.33871.12300.10280.061*
H220.37711.1045−0.03060.061*
O3W0.4909 (4)0.8044 (3)−0.1330 (3)0.0506 (9)
H310.52160.8429−0.19570.076*
H320.55980.7170−0.15710.076*
O4W0.0462 (4)0.8763 (3)0.2470 (3)0.0410 (7)
H41−0.03060.92370.32540.061*
H420.04470.80440.22510.061*
O5W0.2265 (4)1.0292 (4)−0.1370 (3)0.0441 (8)
H510.30141.0388−0.19530.066*
H520.14511.0708−0.14560.066*
O6W0.1006 (6)1.3246 (4)0.3568 (5)0.0661 (12)
H610.00071.38020.41410.099*
H620.15131.31860.39800.099*
O7W0.5761 (4)0.9318 (4)−0.3410 (3)0.0442 (8)
H710.61770.9731−0.32460.066*
H720.61130.9114−0.42450.066*
O8W0.6904 (4)0.5181 (3)−0.2118 (3)0.0423 (7)
H810.63270.4968−0.14550.064*
H820.77680.4929−0.21100.064*
N10.2607 (4)0.8511 (3)0.4986 (3)0.0260 (6)
C10.4710 (4)0.7263 (4)0.1275 (3)0.0211 (6)
C20.6071 (4)0.6265 (3)0.1492 (3)0.0182 (6)
C30.6773 (4)0.4793 (3)0.1120 (3)0.0199 (6)
H30.64270.44020.06980.024*
C40.7996 (4)0.3904 (3)0.1383 (3)0.0185 (6)
C50.8531 (4)0.4479 (3)0.1990 (3)0.0216 (6)
H50.93660.38820.21420.026*
C60.7815 (4)0.5957 (3)0.2375 (4)0.0217 (6)
C70.6609 (4)0.6842 (3)0.2107 (3)0.0203 (6)
H70.61570.78250.23380.024*
C80.8774 (4)0.2302 (3)0.0962 (3)0.0201 (6)
C90.3563 (5)0.8243 (4)0.5518 (4)0.0305 (8)
H90.35920.89880.58720.037*
C100.4495 (5)0.6877 (4)0.5543 (4)0.0320 (8)
H100.51500.67050.59160.038*
C110.4475 (4)0.5746 (4)0.5022 (3)0.0248 (7)
C120.3437 (5)0.6074 (4)0.4505 (4)0.0292 (7)
H12A0.33610.53510.41740.035*
C130.2525 (5)0.7454 (4)0.4480 (4)0.0311 (8)
H130.18560.76570.41160.037*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Eu10.01783 (11)0.01261 (11)0.02442 (12)−0.00607 (8)−0.01399 (8)0.00504 (7)
S10.0289 (4)0.0182 (4)0.0365 (4)−0.0127 (3)−0.0228 (4)0.0062 (3)
O10.0349 (14)0.0155 (11)0.0467 (15)−0.0070 (11)−0.0306 (13)0.0079 (11)
O20.0316 (14)0.0250 (12)0.0428 (14)−0.0151 (11)−0.0283 (12)0.0145 (11)
O30.0466 (17)0.0176 (11)0.0531 (17)−0.0123 (12)−0.0389 (14)0.0047 (11)
O40.0291 (13)0.0154 (10)0.0412 (14)−0.0024 (10)−0.0248 (12)0.0052 (10)
O50.0353 (16)0.0459 (17)0.0472 (17)−0.0255 (14)−0.0181 (14)0.0017 (14)
O60.063 (2)0.0370 (15)0.0425 (15)−0.0283 (15)−0.0416 (15)0.0158 (13)
O70.0460 (17)0.0197 (12)0.0515 (17)−0.0116 (12)−0.0333 (15)0.0025 (12)
O80.0399 (15)0.0218 (12)0.0321 (13)−0.0094 (12)−0.0210 (12)0.0075 (11)
O1W0.0447 (16)0.0234 (12)0.0295 (12)−0.0136 (11)−0.0260 (12)0.0065 (10)
O2W0.0412 (17)0.0359 (15)0.064 (2)−0.0283 (14)−0.0311 (16)0.0240 (15)
O3W0.0385 (17)0.0373 (16)0.0340 (15)−0.0015 (14)−0.0059 (13)0.0146 (13)
O4W0.0450 (17)0.0279 (13)0.0320 (13)−0.0247 (13)0.0001 (12)−0.0031 (11)
O5W0.0452 (18)0.0478 (18)0.0304 (14)−0.0162 (15)−0.0202 (13)0.0166 (14)
O6W0.085 (3)0.0321 (17)0.117 (4)−0.0247 (19)−0.082 (3)0.021 (2)
O7W0.0430 (18)0.0456 (18)0.0454 (18)−0.0269 (16)−0.0190 (15)0.0187 (15)
O8W0.0333 (15)0.0390 (16)0.0533 (18)−0.0186 (13)−0.0208 (14)0.0149 (14)
N10.0280 (15)0.0233 (14)0.0203 (12)−0.0103 (12)−0.0103 (11)0.0060 (11)
C10.0186 (15)0.0184 (15)0.0246 (15)−0.0064 (13)−0.0130 (13)0.0089 (13)
C20.0204 (14)0.0155 (14)0.0199 (13)−0.0065 (12)−0.0139 (12)0.0065 (11)
C30.0219 (15)0.0166 (13)0.0249 (14)−0.0090 (12)−0.0153 (13)0.0064 (13)
C40.0199 (14)0.0122 (12)0.0233 (14)−0.0060 (11)−0.0131 (12)0.0038 (11)
C50.0213 (15)0.0163 (14)0.0290 (15)−0.0057 (12)−0.0180 (13)0.0046 (12)
C60.0234 (16)0.0157 (14)0.0314 (16)−0.0099 (13)−0.0179 (14)0.0051 (12)
C70.0231 (15)0.0134 (13)0.0269 (15)−0.0080 (12)−0.0157 (13)0.0054 (12)
C80.0193 (14)0.0132 (13)0.0257 (15)−0.0051 (12)−0.0131 (12)0.0030 (12)
C90.035 (2)0.0258 (17)0.0312 (17)−0.0146 (16)−0.0185 (16)0.0045 (15)
C100.036 (2)0.0304 (18)0.0378 (19)−0.0156 (16)−0.0256 (17)0.0089 (16)
C110.0223 (16)0.0251 (17)0.0244 (15)−0.0126 (14)−0.0095 (13)0.0096 (13)
C120.0340 (19)0.0270 (17)0.0312 (17)−0.0159 (16)−0.0194 (16)0.0062 (15)
C130.0314 (19)0.0312 (18)0.0351 (18)−0.0151 (16)−0.0210 (16)0.0075 (15)

Geometric parameters (Å, °)

Eu1—O12.500 (2)O6W—H610.8513
Eu1—O22.688 (2)O6W—H620.8503
Eu1—O3i2.298 (3)O7W—H710.8376
Eu1—O4ii2.390 (2)O7W—H720.8365
Eu1—O1W2.455 (2)O8W—H810.8459
Eu1—O2W2.456 (3)O8W—H820.8457
Eu1—O3W2.466 (3)N1—C91.343 (5)
Eu1—O4W2.431 (3)N1—C131.350 (5)
Eu1—O5W2.552 (3)C1—C21.502 (4)
S1—O51.445 (3)C2—C71.391 (4)
S1—O71.454 (3)C2—C31.392 (4)
S1—O61.460 (3)C3—C41.395 (4)
S1—C61.769 (3)C3—H30.9300
O1—C11.273 (4)C4—C51.381 (4)
O2—C11.246 (4)C4—C81.513 (4)
O3—C81.245 (4)C5—C61.396 (4)
O4—C81.245 (4)C5—H50.9300
O8—N11.333 (4)C6—C71.385 (4)
O1W—H110.8386C7—H70.9300
O1W—H120.8384C9—C101.371 (5)
O2W—H210.8400C9—H90.9300
O2W—H220.8380C10—C111.387 (5)
O3W—H310.8383C10—H100.9300
O3W—H320.8396C11—C121.398 (5)
O4W—H410.8345C11—C11iii1.479 (7)
O4W—H420.8346C12—C131.378 (5)
O5W—H510.8333C12—H12A0.9300
O5W—H520.8349C13—H130.9300
O3i—Eu1—O4ii90.47 (9)Eu1—O3W—H32130.2
O3i—Eu1—O4W70.06 (11)H31—O3W—H32109.5
O4ii—Eu1—O4W82.34 (10)Eu1—O4W—H41129.1
O3i—Eu1—O2W144.73 (11)Eu1—O4W—H42119.2
O4ii—Eu1—O2W79.72 (10)H41—O4W—H42110.4
O4W—Eu1—O2W140.17 (11)Eu1—O5W—H51123.4
O3i—Eu1—O1W135.51 (11)Eu1—O5W—H52124.1
O4ii—Eu1—O1W70.13 (9)H51—O5W—H52110.6
O4W—Eu1—O1W67.97 (10)H61—O6W—H62106.3
O2W—Eu1—O1W72.54 (11)H71—O7W—H72110.2
O3i—Eu1—O3W82.80 (13)H81—O8W—H82107.4
O4ii—Eu1—O3W137.24 (10)O8—N1—C9119.1 (3)
O4W—Eu1—O3W132.75 (10)O8—N1—C13119.7 (3)
O2W—Eu1—O3W81.93 (12)C9—N1—C13121.2 (3)
O1W—Eu1—O3W138.25 (12)O2—C1—O1121.0 (3)
O3i—Eu1—O1129.26 (8)O2—C1—C2121.4 (3)
O4ii—Eu1—O1137.26 (9)O1—C1—C2117.6 (3)
O4W—Eu1—O195.95 (11)C7—C2—C3119.8 (3)
O2W—Eu1—O174.72 (9)C7—C2—C1118.7 (3)
O1W—Eu1—O169.79 (9)C3—C2—C1121.5 (3)
O3W—Eu1—O171.94 (11)C2—C3—C4119.8 (3)
O3i—Eu1—O5W72.39 (11)C2—C3—H3120.1
O4ii—Eu1—O5W69.93 (10)C4—C3—H3120.1
O4W—Eu1—O5W132.53 (12)C5—C4—C3120.3 (3)
O2W—Eu1—O5W72.42 (11)C5—C4—C8119.9 (3)
O1W—Eu1—O5W130.36 (10)C3—C4—C8119.8 (3)
O3W—Eu1—O5W67.78 (10)C4—C5—C6119.9 (3)
O1—Eu1—O5W130.58 (11)C4—C5—H5120.1
O3i—Eu1—O280.16 (8)C6—C5—H5120.1
O4ii—Eu1—O2152.27 (9)C7—C6—C5120.0 (3)
O4W—Eu1—O269.93 (10)C7—C6—S1119.3 (2)
O2W—Eu1—O2122.10 (9)C5—C6—S1120.7 (3)
O1W—Eu1—O298.56 (8)C6—C7—C2120.2 (3)
O3W—Eu1—O267.78 (9)C6—C7—H7119.9
O1—Eu1—O249.82 (8)C2—C7—H7119.9
O5W—Eu1—O2129.85 (10)O3—C8—O4125.6 (3)
O5—S1—O7113.70 (19)O3—C8—C4116.8 (3)
O5—S1—O6112.2 (2)O4—C8—C4117.7 (3)
O7—S1—O6110.88 (19)N1—C9—C10120.3 (4)
O5—S1—C6107.16 (17)N1—C9—H9119.8
O7—S1—C6106.77 (16)C10—C9—H9119.8
O6—S1—C6105.62 (16)C9—C10—C11121.0 (3)
C1—O1—Eu198.7 (2)C9—C10—H10119.5
C1—O2—Eu190.40 (19)C11—C10—H10119.5
C8—O3—Eu1i164.5 (2)C10—C11—C12116.8 (3)
C8—O4—Eu1iv144.6 (2)C10—C11—C11iii122.1 (4)
Eu1—O1W—H11113.1C12—C11—C11iii121.0 (4)
Eu1—O1W—H12126.6C13—C12—C11120.9 (3)
H11—O1W—H12109.5C13—C12—H12A119.5
Eu1—O2W—H21109.7C11—C12—H12A119.5
Eu1—O2W—H22109.1N1—C13—C12119.6 (3)
H21—O2W—H22109.8N1—C13—H13120.2
Eu1—O3W—H31120.1C12—C13—H13120.2
O3i—Eu1—O1—C1−9.5 (3)C4—C5—C6—C7−2.2 (5)
O4ii—Eu1—O1—C1144.7 (2)C4—C5—C6—S1177.6 (3)
O4W—Eu1—O1—C159.5 (2)O5—S1—C6—C7−109.9 (3)
O2W—Eu1—O1—C1−160.0 (2)O7—S1—C6—C712.3 (3)
O1W—Eu1—O1—C1123.4 (2)O6—S1—C6—C7130.4 (3)
O3W—Eu1—O1—C1−73.6 (2)O5—S1—C6—C570.4 (3)
O5W—Eu1—O1—C1−110.2 (2)O7—S1—C6—C5−167.5 (3)
O2—Eu1—O1—C12.17 (19)O6—S1—C6—C5−49.4 (3)
O3i—Eu1—O2—C1168.6 (2)C5—C6—C7—C22.0 (5)
O4ii—Eu1—O2—C1−119.5 (2)S1—C6—C7—C2−177.8 (3)
O4W—Eu1—O2—C1−119.1 (2)C3—C2—C7—C6−1.3 (5)
O2W—Eu1—O2—C118.3 (2)C1—C2—C7—C6177.3 (3)
O1W—Eu1—O2—C1−56.4 (2)Eu1i—O3—C8—O436.9 (12)
O3W—Eu1—O2—C182.5 (2)Eu1i—O3—C8—C4−142.6 (8)
O1—Eu1—O2—C1−2.2 (2)Eu1iv—O4—C8—O342.7 (7)
O5W—Eu1—O2—C1111.6 (2)Eu1iv—O4—C8—C4−137.8 (3)
Eu1—O2—C1—O13.8 (3)C5—C4—C8—O3−169.6 (3)
Eu1—O2—C1—C2−176.0 (3)C3—C4—C8—O38.6 (5)
Eu1—O1—C1—O2−4.2 (4)C5—C4—C8—O410.9 (5)
Eu1—O1—C1—C2175.7 (2)C3—C4—C8—O4−170.9 (3)
O2—C1—C2—C7−167.3 (3)O8—N1—C9—C10−179.0 (3)
O1—C1—C2—C712.8 (5)C13—N1—C9—C100.8 (6)
O2—C1—C2—C311.2 (5)N1—C9—C10—C110.1 (6)
O1—C1—C2—C3−168.6 (3)C9—C10—C11—C12−1.5 (6)
C7—C2—C3—C40.8 (5)C9—C10—C11—C11iii177.1 (4)
C1—C2—C3—C4−177.7 (3)C10—C11—C12—C132.2 (6)
C2—C3—C4—C5−1.0 (5)C11iii—C11—C12—C13−176.5 (4)
C2—C3—C4—C8−179.2 (3)O8—N1—C13—C12179.6 (3)
C3—C4—C5—C61.7 (5)C9—N1—C13—C12−0.1 (6)
C8—C4—C5—C6179.9 (3)C11—C12—C13—N1−1.4 (6)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x−1, y+1, z; (iii) −x+1, −y+1, −z+1; (iv) x+1, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1w—H11···O80.841.872.673 (4)159
O1w—H12···O6w0.841.912.710 (4)160
O2w—H22···O1v0.842.112.804 (4)140
O2w—H21···O3wv0.842.463.148 (5)140
O3w—H31···O7w0.841.912.742 (4)175
O3w—H32···O8w0.841.872.704 (4)172
O4w—H41···O8vi0.831.822.648 (4)171
O4w—H42···O5vii0.832.022.840 (4)166
O5w—H51···O7w0.832.303.026 (5)146
O6w—H62···O6viii0.852.182.955 (5)151
O6w—H61···O6ii0.852.182.807 (5)130
O7w—H71···O1v0.842.493.191 (4)142
O7w—H72···O7ix0.842.032.860 (5)169
O8w—H81···O2i0.852.172.867 (4)140
O8w—H82···O5x0.852.072.879 (5)159

Symmetry codes: (v) −x+1, −y+2, −z; (vi) −x, −y+2, −z+1; (vii) x−1, y, z; (viii) −x+1, −y+2, −z+1; (ii) x−1, y+1, z; (ix) x, y, z−1; (i) −x+1, −y+1, −z; (x) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5055).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Hu, M.-L., Cai, X.-Q., Miao, Q. & Xiao, H.-P. (2005). Russ. J. Coord. Chem.31, 368–378.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography