PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1495.
Published online 2010 October 31. doi:  10.1107/S1600536810043692
PMCID: PMC3009317

[2,2-Bis(diphenyl­phosphan­yl)propane-κ2 P,P′]tetra­carbonyl­chromium(0) dichloro­methane monosolvate

Abstract

The title compound, [Cr(C27H26P2)(CO)4]·CH2Cl2, was obtained by the reaction of Ph2PCMe2PPh2 with Cr(CO)6 in refluxing toluene by substitution of two carbonyl ligands. The CrC4P2 coordination geometry at the Cr atom is distorted octa­hedral, with a P—Cr—P bite angle of 70.27 (2)°.

Related literature

For the original synthesis of Ph2PCMe2PPh2, see: Hewertson & Watson (1962 [triangle]). For an alternative synthesis of the title compound, see: Al-Jibori & Shaw (1983 [triangle]). For the synthesis of Ph2PCMe2PPh2 and Mo or W carbonyl complexes of related ligands with different substituents at the central carbon, see: Hogarth & Kilmartin (2007 [triangle]). For complexation of Ph2PCMe2PPh2 and structural characterization of monomeric complexes of Pd or Ru, see: Barkley et al. (1995 [triangle], 1998 [triangle]); Anandhi et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1495-scheme1.jpg

Experimental

Crystal data

  • [Cr(C27H26P2)(CO)4]·CH2Cl2
  • M r = 661.38
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1495-efi1.jpg
  • a = 8.9998 (5) Å
  • b = 9.4895 (5) Å
  • c = 18.3178 (9) Å
  • α = 99.811 (4)°
  • β = 94.856 (4)°
  • γ = 93.020 (4)°
  • V = 1532.40 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.69 mm−1
  • T = 150 K
  • 0.50 × 0.50 × 0.27 mm

Data collection

  • Stoe IPDS II diffractometer
  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005 [triangle]) T min = 0.700, T max = 0.834
  • 25497 measured reflections
  • 7051 independent reflections
  • 5824 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.087
  • S = 1.06
  • 7051 reflections
  • 372 parameters
  • H-atom parameters constrained
  • Δρmax = 0.71 e Å−3
  • Δρmin = −0.65 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810043692/cv2782sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043692/cv2782Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Leibniz-Institut für Katalyse e. V. an der Universität Rostock.

supplementary crystallographic information

Comment

2,2-Bis(diphenylphosphino)propane was first prepared by cleavage of triphenylphosphine with sodium in liquid ammonia and following treatment with 2,2-dichloropropane (Hewertson & Watson, 1962). Most of the small bite-angle diphosphine complexes, of the type [M(CO)4{Ph2PC(R1R2)PPh2}] (M = Mo, W; R1 = H, Me, Et, Pr, allyl, R2 = Me, allyl), have been prepared via elaboration of the methylene backbones in [M(CO)4(Ph2PCH2PPh2)] (Ph2PCH2PPh2 = dppm) as a result of successive deprotonation and alkyl halide addition (Hogarth & Kilmartin, 2007). The above mentioned chromium complex [Cr(CO)4(Ph2PCMe2PPh2)] was prepared also by this way, but not structurally characterized yet (Al-Jibori & Shaw, 1983). Molecular structures of monomeric ruthenium (Barkley et al., 1998; Anandhi et al., 2003) and palladium (Barkley et al., 1995) complexes of 2,2-bis(diphenylphosphino)propane are already known.

Here we describe the synthesis of the known chromium complex C31H26CrO4P2 by direct reaction of Ph2PCMe2PPh2 with Cr(CO)6. Crystals suitable for X-ray analysis were obtained from dichloromethane/methanol solution. The asymmetric unit contains one complex molecule and additionally one solvent molecule dichloromethane. The chromium center is coordinated by the chelating diphosphine Ph2PCMe2PPh2 and four carbonyl ligands in a distorted octahedral geometry. A bite-angle P—Cr—P of 70.27 (2)° was observed. The P—C—P angle of the complexed ligand is 92.07 (7)°. In the crystal structure, short distance of 3.807 (2) Å between the centroids of aromatic rings C14–C19 from the neighbouring molecules suggests an existence of weak π–π interactions.

Experimental

Cr(CO)6 (175 mg, 0.8 mmol) was added to a solution of Ph2PCMe2PPh2 (309 mg, 0.75 mmol) in 20 ml of toluene and the resulting solution was stirred at reflux temperature for 72 h. Subsequently, the formed yellow solution was cooled down to 0°C and filtered. Toluene was removed in vacuum and the product was extracted with dichloromethane. The major part of dichloromethane was removed and the remaining solution was over-layered with methanol to get crystals of the title compound at -40°C, which are suitable for X-ray crystal structure analysis. The analytical data of the yellow compound correspond with those in the literature.

Refinement

All H atoms were placed in idealized positions with d(C—H) = 0.99 (CH2), 0.98 (CH3) and 0.95 Å (CH) and refined using a riding model with Uiso(H) fixed at 1.5Ueq(C) for CH3 and 1.2Ueq(C) for CH2 and CH.

Figures

Fig. 1.
The molecular structure of the title compound showing the atom-labelling scheme. H atoms are omitted for clarity. Thermal ellipsoids are drawn at the 30% probability level.

Crystal data

[Cr(C27H26P2)(CO)4]·CH2Cl2Z = 2
Mr = 661.38F(000) = 680
Triclinic, P1Dx = 1.433 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9998 (5) ÅCell parameters from 4481 reflections
b = 9.4895 (5) Åθ = 2.2–29.6°
c = 18.3178 (9) ŵ = 0.69 mm1
α = 99.811 (4)°T = 150 K
β = 94.856 (4)°Prism, yellow
γ = 93.020 (4)°0.50 × 0.50 × 0.27 mm
V = 1532.40 (14) Å3

Data collection

Stoe IPDS II diffractometer7051 independent reflections
Radiation source: fine-focus sealed tube5824 reflections with I > 2σ(I)
graphiteRint = 0.038
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005)h = −11→11
Tmin = 0.700, Tmax = 0.834k = −12→12
25497 measured reflectionsl = −23→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0478P)2 + 0.3172P] where P = (Fo2 + 2Fc2)/3
7051 reflections(Δ/σ)max = 0.001
372 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = −0.65 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.01536 (18)0.20775 (19)0.18509 (10)0.0267 (4)
C20.76174 (18)0.13420 (18)0.22785 (10)0.0248 (3)
C30.96144 (18)0.26041 (19)0.33115 (10)0.0277 (4)
C41.02766 (18)0.46144 (19)0.25461 (10)0.0270 (4)
C50.57483 (17)0.44246 (17)0.20067 (9)0.0216 (3)
C60.45608 (17)0.31571 (19)0.19234 (10)0.0259 (3)
H6A0.38010.34050.22680.039*
H6B0.50410.23070.20380.039*
H6C0.40870.29550.14110.039*
C70.49660 (19)0.57332 (19)0.18302 (10)0.0277 (4)
H7A0.44900.55250.13190.041*
H7B0.57020.65520.18830.041*
H7C0.42040.59630.21760.041*
C80.80565 (17)0.54283 (18)0.10865 (10)0.0241 (3)
C90.81566 (19)0.5386 (2)0.03282 (11)0.0300 (4)
H90.78020.4547−0.00170.036*
C100.8776 (2)0.6569 (2)0.00739 (12)0.0369 (4)
H100.88410.6533−0.04440.044*
C110.9293 (2)0.7788 (2)0.05695 (13)0.0381 (5)
H110.97120.85920.03930.046*
C120.9204 (2)0.7847 (2)0.13238 (13)0.0356 (4)
H120.95580.86910.16650.043*
C130.85938 (18)0.66646 (19)0.15817 (11)0.0292 (4)
H130.85440.67030.21010.035*
C140.66313 (18)0.26334 (18)0.06079 (9)0.0240 (3)
C150.73759 (18)0.14068 (19)0.03805 (10)0.0264 (4)
H150.82060.11860.06870.032*
C160.6919 (2)0.0507 (2)−0.02876 (11)0.0316 (4)
H160.7451−0.0313−0.04430.038*
C170.5691 (2)0.0798 (2)−0.07279 (10)0.0325 (4)
H170.53800.0180−0.11860.039*
C180.4914 (2)0.1991 (2)−0.05008 (10)0.0309 (4)
H180.40530.2176−0.07970.037*
C190.53874 (19)0.2914 (2)0.01568 (10)0.0282 (4)
H190.48640.37440.03030.034*
C200.74847 (18)0.63022 (18)0.34037 (9)0.0241 (3)
C210.6667 (2)0.74999 (19)0.33735 (11)0.0321 (4)
H210.57470.74100.30690.039*
C220.7189 (3)0.8825 (2)0.37862 (12)0.0403 (5)
H220.66320.96400.37550.048*
C230.8507 (2)0.8967 (2)0.42396 (12)0.0410 (5)
H230.88670.98800.45130.049*
C240.9306 (2)0.7781 (2)0.42962 (11)0.0367 (4)
H241.01970.78690.46230.044*
C250.88029 (19)0.6458 (2)0.38738 (10)0.0289 (4)
H250.93670.56480.39060.035*
C260.56456 (17)0.39289 (17)0.35684 (9)0.0232 (3)
C270.44294 (19)0.4714 (2)0.37624 (11)0.0309 (4)
H270.42470.55500.35570.037*
C280.3486 (2)0.4280 (2)0.42524 (12)0.0377 (4)
H280.26540.48160.43800.045*
C290.3749 (2)0.3072 (2)0.45557 (11)0.0381 (5)
H290.30980.27760.48920.046*
C300.4951 (2)0.2296 (2)0.43722 (11)0.0371 (4)
H300.51330.14690.45850.045*
C310.5902 (2)0.27148 (19)0.38763 (10)0.0293 (4)
H310.67280.21700.37480.035*
C320.2113 (3)0.9291 (3)0.33113 (16)0.0622 (7)
H32A0.11550.87200.31450.075*
H32B0.18811.02810.35150.075*
Cl10.30771 (6)0.85575 (7)0.40154 (4)0.05184 (15)
Cl20.31373 (9)0.93219 (10)0.25513 (5)0.0796 (2)
Cr10.88203 (3)0.30677 (3)0.242280 (15)0.02031 (8)
O11.09906 (15)0.14688 (15)0.14916 (8)0.0396 (3)
O20.69755 (15)0.02391 (13)0.21958 (8)0.0353 (3)
O31.00875 (16)0.22861 (17)0.38596 (8)0.0426 (3)
O41.12468 (14)0.54764 (15)0.26147 (9)0.0401 (3)
P10.73655 (4)0.38536 (4)0.14524 (2)0.02048 (10)
P20.69140 (4)0.44708 (4)0.29237 (2)0.01995 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0248 (8)0.0285 (9)0.0269 (9)−0.0012 (7)0.0000 (7)0.0071 (7)
C20.0244 (7)0.0281 (9)0.0225 (9)0.0037 (6)0.0024 (6)0.0059 (7)
C30.0239 (8)0.0286 (9)0.0303 (10)0.0001 (6)0.0025 (7)0.0050 (7)
C40.0233 (8)0.0305 (9)0.0274 (9)0.0040 (7)0.0026 (7)0.0052 (7)
C50.0195 (7)0.0232 (8)0.0223 (8)−0.0007 (6)0.0019 (6)0.0055 (6)
C60.0208 (7)0.0305 (9)0.0255 (9)−0.0047 (6)0.0011 (6)0.0045 (7)
C70.0262 (8)0.0297 (9)0.0282 (9)0.0041 (7)0.0018 (7)0.0083 (7)
C80.0197 (7)0.0257 (8)0.0293 (9)0.0016 (6)0.0050 (6)0.0107 (7)
C90.0283 (8)0.0338 (9)0.0312 (10)0.0033 (7)0.0074 (7)0.0120 (8)
C100.0367 (9)0.0418 (11)0.0396 (11)0.0070 (8)0.0164 (8)0.0207 (9)
C110.0294 (9)0.0347 (10)0.0577 (14)0.0022 (7)0.0145 (9)0.0242 (10)
C120.0270 (8)0.0296 (9)0.0516 (13)−0.0030 (7)0.0042 (8)0.0128 (9)
C130.0252 (8)0.0287 (9)0.0347 (10)−0.0008 (7)0.0035 (7)0.0095 (8)
C140.0235 (7)0.0274 (8)0.0216 (8)−0.0035 (6)0.0033 (6)0.0067 (7)
C150.0245 (8)0.0299 (9)0.0248 (9)−0.0010 (6)0.0042 (7)0.0046 (7)
C160.0311 (9)0.0329 (9)0.0296 (10)−0.0017 (7)0.0090 (7)0.0004 (8)
C170.0352 (9)0.0396 (10)0.0202 (9)−0.0110 (8)0.0033 (7)0.0017 (8)
C180.0307 (9)0.0385 (10)0.0234 (9)−0.0066 (7)−0.0021 (7)0.0101 (8)
C190.0276 (8)0.0322 (9)0.0255 (9)−0.0007 (7)0.0013 (7)0.0084 (7)
C200.0255 (7)0.0247 (8)0.0226 (8)−0.0036 (6)0.0068 (6)0.0049 (7)
C210.0390 (9)0.0258 (9)0.0310 (10)0.0009 (7)0.0028 (8)0.0038 (8)
C220.0588 (12)0.0235 (9)0.0390 (12)0.0011 (8)0.0100 (10)0.0046 (8)
C230.0545 (12)0.0281 (10)0.0363 (11)−0.0162 (9)0.0128 (9)−0.0043 (8)
C240.0323 (9)0.0430 (11)0.0294 (10)−0.0122 (8)0.0051 (8)−0.0055 (8)
C250.0268 (8)0.0319 (9)0.0259 (9)−0.0030 (7)0.0049 (7)−0.0002 (7)
C260.0240 (7)0.0244 (8)0.0204 (8)−0.0043 (6)0.0026 (6)0.0037 (7)
C270.0286 (8)0.0334 (9)0.0323 (10)0.0017 (7)0.0072 (7)0.0086 (8)
C280.0301 (9)0.0443 (11)0.0390 (11)−0.0010 (8)0.0127 (8)0.0047 (9)
C290.0386 (10)0.0449 (11)0.0314 (10)−0.0105 (8)0.0124 (8)0.0083 (9)
C300.0467 (11)0.0348 (10)0.0326 (11)−0.0041 (8)0.0093 (9)0.0136 (8)
C310.0338 (9)0.0273 (9)0.0281 (10)−0.0001 (7)0.0063 (7)0.0075 (7)
C320.0465 (13)0.085 (2)0.0622 (17)0.0223 (13)0.0112 (12)0.0258 (15)
Cl10.0416 (3)0.0617 (4)0.0546 (4)0.0032 (2)0.0064 (2)0.0164 (3)
Cl20.0798 (5)0.1007 (6)0.0752 (5)0.0227 (4)0.0300 (4)0.0472 (5)
Cr10.01840 (12)0.02201 (14)0.02079 (15)0.00010 (9)0.00154 (10)0.00511 (10)
O10.0335 (7)0.0421 (8)0.0431 (8)0.0087 (6)0.0132 (6)0.0005 (7)
O20.0371 (7)0.0261 (7)0.0414 (8)−0.0056 (5)0.0009 (6)0.0059 (6)
O30.0417 (8)0.0550 (9)0.0330 (8)0.0023 (6)−0.0071 (6)0.0186 (7)
O40.0281 (6)0.0383 (7)0.0523 (9)−0.0088 (6)0.0027 (6)0.0071 (7)
P10.01951 (18)0.0222 (2)0.0203 (2)−0.00082 (15)0.00222 (15)0.00564 (16)
P20.01915 (18)0.0205 (2)0.0203 (2)−0.00140 (14)0.00230 (15)0.00456 (16)

Geometric parameters (Å, °)

C1—O11.155 (2)C16—H160.9500
C1—Cr11.8484 (19)C17—C181.384 (3)
C2—O21.149 (2)C17—H170.9500
C2—Cr11.8817 (17)C18—C191.383 (3)
C3—O31.151 (2)C18—H180.9500
C3—Cr11.8533 (19)C19—H190.9500
C4—O41.148 (2)C20—C251.391 (2)
C4—Cr11.8860 (17)C20—C211.392 (3)
C5—C71.527 (2)C20—P21.8347 (17)
C5—C61.545 (2)C21—C221.388 (3)
C5—P11.8943 (16)C21—H210.9500
C5—P21.8963 (17)C22—C231.376 (3)
C6—H6A0.9800C22—H220.9500
C6—H6B0.9800C23—C241.381 (3)
C6—H6C0.9800C23—H230.9500
C7—H7A0.9800C24—C251.389 (3)
C7—H7B0.9800C24—H240.9500
C7—H7C0.9800C25—H250.9500
C8—C131.392 (3)C26—C311.388 (2)
C8—C91.393 (3)C26—C271.393 (3)
C8—P11.8393 (16)C26—P21.8263 (16)
C9—C101.394 (2)C27—C281.384 (2)
C9—H90.9500C27—H270.9500
C10—C111.376 (3)C28—C291.380 (3)
C10—H100.9500C28—H280.9500
C11—C121.383 (3)C29—C301.373 (3)
C11—H110.9500C29—H290.9500
C12—C131.394 (2)C30—C311.391 (2)
C12—H120.9500C30—H300.9500
C13—H130.9500C31—H310.9500
C14—C151.393 (3)C32—Cl21.737 (3)
C14—C191.399 (2)C32—Cl11.755 (3)
C14—P11.8184 (18)C32—H32A0.9900
C15—C161.385 (3)C32—H32B0.9900
C15—H150.9500Cr1—P12.3644 (5)
C16—C171.380 (3)Cr1—P22.3767 (5)
O1—C1—Cr1179.44 (16)C23—C22—C21120.44 (19)
O2—C2—Cr1175.10 (15)C23—C22—H22119.8
O3—C3—Cr1178.39 (16)C21—C22—H22119.8
O4—C4—Cr1174.55 (16)C22—C23—C24119.97 (18)
C7—C5—C6108.25 (13)C22—C23—H23120.0
C7—C5—P1117.15 (11)C24—C23—H23120.0
C6—C5—P1109.61 (12)C23—C24—C25119.77 (19)
C7—C5—P2121.62 (12)C23—C24—H24120.1
C6—C5—P2106.88 (11)C25—C24—H24120.1
P1—C5—P292.07 (7)C24—C25—C20120.90 (18)
C5—C6—H6A109.5C24—C25—H25119.6
C5—C6—H6B109.5C20—C25—H25119.6
H6A—C6—H6B109.5C31—C26—C27119.18 (15)
C5—C6—H6C109.5C31—C26—P2119.40 (13)
H6A—C6—H6C109.5C27—C26—P2121.43 (13)
H6B—C6—H6C109.5C28—C27—C26120.27 (17)
C5—C7—H7A109.5C28—C27—H27119.9
C5—C7—H7B109.5C26—C27—H27119.9
H7A—C7—H7B109.5C29—C28—C27120.18 (19)
C5—C7—H7C109.5C29—C28—H28119.9
H7A—C7—H7C109.5C27—C28—H28119.9
H7B—C7—H7C109.5C30—C29—C28120.01 (17)
C13—C8—C9118.82 (15)C30—C29—H29120.0
C13—C8—P1119.29 (13)C28—C29—H29120.0
C9—C8—P1121.74 (14)C29—C30—C31120.39 (18)
C8—C9—C10120.26 (19)C29—C30—H30119.8
C8—C9—H9119.9C31—C30—H30119.8
C10—C9—H9119.9C26—C31—C30119.97 (18)
C11—C10—C9120.31 (19)C26—C31—H31120.0
C11—C10—H10119.8C30—C31—H31120.0
C9—C10—H10119.8Cl2—C32—Cl1112.25 (14)
C10—C11—C12120.14 (17)Cl2—C32—H32A109.2
C10—C11—H11119.9Cl1—C32—H32A109.2
C12—C11—H11119.9Cl2—C32—H32B109.2
C11—C12—C13119.81 (19)Cl1—C32—H32B109.2
C11—C12—H12120.1H32A—C32—H32B107.9
C13—C12—H12120.1C1—Cr1—C394.87 (8)
C8—C13—C12120.66 (18)C1—Cr1—C287.32 (7)
C8—C13—H13119.7C3—Cr1—C287.49 (7)
C12—C13—H13119.7C1—Cr1—C484.72 (7)
C15—C14—C19118.54 (16)C3—Cr1—C489.19 (7)
C15—C14—P1118.92 (13)C2—Cr1—C4171.09 (7)
C19—C14—P1122.46 (14)C1—Cr1—P198.01 (6)
C16—C15—C14120.68 (17)C3—Cr1—P1166.91 (6)
C16—C15—H15119.7C2—Cr1—P190.76 (5)
C14—C15—H15119.7C4—Cr1—P194.31 (5)
C17—C16—C15120.13 (18)C1—Cr1—P2168.24 (6)
C17—C16—H16119.9C3—Cr1—P296.88 (6)
C15—C16—H16119.9C2—Cr1—P293.54 (5)
C16—C17—C18119.94 (17)C4—Cr1—P295.07 (5)
C16—C17—H17120.0P1—Cr1—P270.265 (16)
C18—C17—H17120.0C14—P1—C8102.23 (8)
C19—C18—C17120.19 (17)C14—P1—C5108.57 (7)
C19—C18—H18119.9C8—P1—C5106.88 (7)
C17—C18—H18119.9C14—P1—Cr1121.91 (6)
C18—C19—C14120.47 (17)C8—P1—Cr1119.29 (6)
C18—C19—H19119.8C5—P1—Cr196.77 (5)
C14—C19—H19119.8C26—P2—C2099.66 (7)
C25—C20—C21118.50 (16)C26—P2—C5106.62 (7)
C25—C20—P2115.71 (13)C20—P2—C5112.64 (7)
C21—C20—P2125.64 (13)C26—P2—Cr1124.58 (6)
C22—C21—C20120.37 (18)C20—P2—Cr1116.97 (5)
C22—C21—H21119.8C5—P2—Cr196.31 (5)
C20—C21—H21119.8

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2782).

References

  • Al-Jibori, S. & Shaw, B. L. (1983). Inorg. Chim. Acta, 74, 235–239.
  • Anandhi, U., Holbert, T., Lueng, D. & Sharp, P. R. (2003). Inorg. Chem.42, 1282–1295. [PubMed]
  • Barkley, J., Ellis, M., Higgins, S. J. & McCart, M. K. (1998). Organometallics, 17, 1725–1731.
  • Barkley, J. V., Grimshaw, J. C., Higgins, S. J., Hoare, P. B., McCart, M. K. & Smith, A. K. (1995). J. Chem. Soc. Dalton Trans. pp. 2901–2908.
  • Hewertson, W. & Watson, H. R. (1962). J. Chem. Soc. 1490–1494.
  • Hogarth, G. & Kilmartin, J. (2007). J. Organomet. Chem.692, 5655–5670.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography