PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1412–m1413.
Published online 2010 October 20. doi:  10.1107/S1600536810040572
PMCID: PMC3009310

n-Butyl­dichlorido(2-{(1E)-1-[2-(pyridin-2-yl)hydrazin-1-yl­idene]eth­yl}phenolato)tin(IV)

Abstract

Two independent mol­ecules comprise the asymmetric unit of the title compound, [Sn(C4H9)(C13H12N3O)Cl2]. The Sn atom in each is coordinated by the tridentate ligand via the phenoxide O, hydrazine N and pyridyl N atoms, forming five- and six-membered chelate rings. The approximately octa­hedral coordination geometry is completed by the α-C atom of the n-butyl group (which is trans to the hydrazine N atom) and two mutually trans Cl atoms. Differences between the mol­ecules are evident in the relative planarity of the chelate rings and in the conformations of the n-butyl groups [C—C—C—C = 177.2 (5) and −64.4 (11)°]. Significant differences in the Sn—Cl bond lengths are related to the formation of N—H(...)Cl hydrogen bonds, which link the mol­ecules comprising the asymmetric unit into dimeric aggregates. These are consolidated in the crystal packing by C—H(...)Cl contacts. The structure was refined as an inversion twin; the minor twin component is 37 (3)%.

Related literature

For background to related organotin compounds, see: Affan et al. (2009 [triangle]). For background to the varied biological activities of organotin compounds, see: Gielen & Tiekink (2005 [triangle]). For additional structure analysis, see: Spek (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1412-scheme1.jpg

Experimental

Crystal data

  • [Sn(C4H9)(C13H12N3O)Cl2]
  • M r = 472.96
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1412-efi3.jpg
  • a = 8.9566 (6) Å
  • b = 21.0210 (13) Å
  • c = 10.3974 (7) Å
  • β = 110.567 (1)°
  • V = 1832.8 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.70 mm−1
  • T = 100 K
  • 0.25 × 0.15 × 0.05 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.677, T max = 0.920
  • 17203 measured reflections
  • 8239 independent reflections
  • 7357 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.108
  • S = 1.02
  • 8239 reflections
  • 442 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 2.28 e Å−3
  • Δρmin = −1.21 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 4006 Friedel pairs
  • Flack parameter: 0.37 (3)

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]) and publCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810040572/hb5679sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040572/hb5679Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors express their gratitude to the Ministry of Science, Technology and Innovation (MOSTI) for a research grant (No. 06–01-09-SF0046), and to Universiti Malaysia Sarawak (UNIMAS) for financial support. The authors also thank the University of Malaya for support of the crystallographic facility.

supplementary crystallographic information

Comment

The title compound was examined in connection with synthetic studies of organotin(IV) compounds with pyruvic acid-2-pyridylhydrazone ligands (Affan et al., 2009), studies motivated by their putative biological activity (Gielen & Tiekink, 2005).

Two independent molecules comprise the asymmetric unit of (I), Figs 1 and 2. The Sn atom in each is coordinated by the tridentate ligand via the phenoxide-O, hydrazine-N and pyridyl-N atoms to form five- and six-membered chelate rings, Table 1. For the Sn1 atom, distortions of these rings from planarity [r.m.s. deviation from the five- and six-membered rings = 0.083 and 0.216 Å, respectively] are greater than the equivalent rings involving the Sn2 atom [r.m.s. = 0.042 and 0.109 Å, respectively]. The dihedral angle formed between the chelate rings = 8.9 (3) ° for Sn1, and 7.4 (3) ° for Sn2. Overall, the tridentate ligand deviates further from co-planarity for the Sn1 atom compared to the Sn2 atom as seen in the respective dihedral angles formed between the pyridyl and benzene rings of 23.3 (4) and 17.3 (4) °. The coordination geometry is completed by two chlorido atoms and the alpha-C atom of the n-butyl group. The chlorido atoms occupy mutually trans positions and the butyl-C atom is trans to the hydrazine-N atom. The resulting CCl2N2O donor set defines an approximate octahedron. A further difference between the independent molecules is found in the conformation of the n-butyl groups. This is reflected in the C1—C2—C3—C4 and C2—C3—C4—Sn1 torsion angles of 177.2 (5) and -71.1 (6) °, respectively, compared to the C18—C19—C20—C21 and C19—C20—C21—Sn2 angles of -64.4 (11) and -72.9 (9) °, respectively.

As noted in Table 1, there are disparities in the Sn—Cl bond distances. This is directly related to the participation of the Cl2 and Cl4 atoms in N—H···Cl hydrogen bonding interactions, Table2, which connect the molecules comprising the asymmetric unit into dimeric aggregates. The latter are sustained in the crystal packing by C—H···Cl contacts, Fig. 3 and Table 2.

Experimental

2-Hydroxyacetophenone 2-pyridylhydrazone (0.45 g, 0.002 mol) was dissolved in hot absolute methanol (20 ml) in a Schlenk round bottom flask under an nitrogen atmosphere. Potassium hydroxide (0.11 g, 0.002 mol) dissolved in methanol (5 ml) was added drop wise to the solution, resulting in a colour change from yellow to orange. The resulting mixture was refluxed for 1 h and a solution of n-BuSnCl3 (0.56 g, 0.002 mol) in methanol (10 ml) was added drop wise to the refluxed solution. The resulting mixture was refluxed for 5 h and allowed to cool to room temperature. The precipitated KCl was removed via filtration. Then the filtrate was evaporated to dryness by using a rotary evaporator to obtain orange microcrystals. The orange microcrystals were filtered off, washed with cold methanol and dried overnight over P2O5in vacuo. Single crystals of (I) were obtained by slow evaporation of its methanol solution at room temperature. Yield: 0.67 g, 60%. M.pt. 538–540 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C). The N-bound H-atoms were located in a difference Fourier map and were refined with a distance restraint of N—H 0.86±0.01 Å, and with Uiso(H) = 1.2Ueq(N). The maximum and minimum residual electron density peaks of 2.28 and 1.21 e Å-3, respectively, were located 1.16 Å and 0.76 Å from the Sn2 and Cl3 atoms, respectively. The structure was refined as an inversion twin. The use of this twin law gave the minor twin component as 37 (3)%.

Figures

Fig. 1.
The molecular structure of the first independent molecule in (I) showing displacement ellipsoids at the 50% probability level.
Fig. 2.
The molecular structure of the second independent molecule in (I) showing displacement ellipsoids at the 50% probability level.
Fig. 3.
Unit-cell contents shown in projection down the a axis in (I). The N–H···Cl hydrogen bonding and C–H···Cl contacts are shown as blue and orange dashed lines, respectively.

Crystal data

[Sn(C4H9)(C13H12N3O)Cl2]F(000) = 944
Mr = 472.96Dx = 1.714 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 6860 reflections
a = 8.9566 (6) Åθ = 2.3–28.2°
b = 21.0210 (13) ŵ = 1.70 mm1
c = 10.3974 (7) ÅT = 100 K
β = 110.567 (1)°Prism, orange
V = 1832.8 (2) Å30.25 × 0.15 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer8239 independent reflections
Radiation source: fine-focus sealed tube7357 reflections with I > 2σ(I)
graphiteRint = 0.032
ω scansθmax = 27.5°, θmin = 1.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.677, Tmax = 0.920k = −26→27
17203 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108w = 1/[σ2(Fo2) + (0.0471P)2 + 7.3356P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
8239 reflectionsΔρmax = 2.28 e Å3
442 parametersΔρmin = −1.21 e Å3
4 restraintsAbsolute structure: Flack (1983), 4006 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.37 (3)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.49996 (4)0.90443 (2)0.50000 (3)0.01474 (11)
Sn20.43258 (4)0.59873 (2)0.81542 (4)0.01729 (12)
Cl10.2560 (2)0.92741 (8)0.30505 (18)0.0234 (4)
Cl20.71385 (18)0.85448 (8)0.70222 (17)0.0170 (3)
Cl30.6382 (3)0.59138 (10)1.0451 (2)0.0429 (6)
Cl40.2538 (2)0.63490 (9)0.58185 (19)0.0263 (4)
O10.6157 (6)0.8917 (2)0.3683 (5)0.0195 (10)
O20.2612 (7)0.6248 (3)0.8890 (6)0.0351 (14)
N10.4371 (7)0.8008 (3)0.4495 (7)0.0174 (13)
N20.3150 (8)0.7796 (3)0.4922 (7)0.0182 (13)
H2N0.289 (9)0.7402 (11)0.492 (8)0.022*
N30.3350 (8)0.8773 (3)0.6049 (6)0.0177 (13)
N40.5039 (7)0.7016 (3)0.8490 (7)0.0159 (12)
N50.6249 (8)0.7180 (3)0.7999 (7)0.0172 (13)
H5N0.607 (9)0.7568 (12)0.773 (7)0.021*
N60.6218 (8)0.6147 (3)0.7280 (8)0.0233 (14)
C10.9471 (7)1.0332 (3)0.4834 (6)0.0184 (13)
H1A1.05411.01450.51850.028*
H1B0.95451.07920.49930.028*
H1C0.89861.02470.38470.028*
C20.8449 (7)1.0038 (3)0.5573 (6)0.0138 (11)
H2A0.89471.01210.65710.017*
H2B0.84030.95720.54330.017*
C30.6756 (7)1.0307 (3)0.5055 (6)0.0146 (12)
H3A0.68131.07710.52330.018*
H3B0.62941.02450.40480.018*
C40.5633 (8)1.0012 (3)0.5702 (7)0.0170 (14)
H4A0.46521.02730.54650.020*
H4B0.61531.00140.67140.020*
C50.6916 (9)0.8399 (3)0.3502 (7)0.0185 (15)
C60.8343 (9)0.8498 (4)0.3249 (7)0.0221 (15)
H60.87450.89180.32750.027*
C70.9166 (9)0.7998 (4)0.2965 (7)0.0244 (15)
H71.01350.80770.28130.029*
C80.8605 (9)0.7386 (4)0.2896 (8)0.0272 (17)
H80.91740.70450.26840.033*
C90.7194 (9)0.7269 (3)0.3140 (7)0.0222 (15)
H90.68010.68470.30910.027*
C100.6336 (8)0.7781 (3)0.3465 (7)0.0150 (14)
C110.4906 (9)0.7603 (3)0.3786 (7)0.0164 (15)
C120.4144 (10)0.6970 (3)0.3391 (8)0.0225 (16)
H12A0.29830.70150.30950.034*
H12B0.45170.66820.41810.034*
H12C0.44310.67950.26350.034*
C130.2705 (9)0.8186 (4)0.5790 (8)0.0165 (14)
C140.1616 (10)0.7971 (4)0.6375 (8)0.0248 (17)
H140.12270.75470.62340.030*
C150.1121 (9)0.8383 (4)0.7152 (8)0.0252 (17)
H150.03280.82540.75090.030*
C160.1784 (10)0.9006 (4)0.7434 (9)0.0259 (18)
H160.14780.92930.80030.031*
C170.2872 (9)0.9172 (4)0.6856 (8)0.0224 (16)
H170.33200.95870.70240.027*
C180.0622 (13)0.4490 (6)0.7565 (13)0.069 (3)
H18A−0.05020.45770.74160.103*
H18B0.12860.46370.84820.103*
H18C0.07720.40310.74920.103*
C190.1096 (11)0.4834 (4)0.6495 (10)0.045 (2)
H19A0.09310.52960.65740.054*
H19B0.03840.46970.55730.054*
C200.2852 (11)0.4721 (4)0.6612 (9)0.042 (2)
H20A0.30350.42590.65620.050*
H20B0.30380.49270.58250.050*
C210.4014 (9)0.4978 (3)0.7918 (9)0.0265 (18)
H21A0.50680.47890.80430.032*
H21B0.36930.48210.86800.032*
C220.2329 (10)0.6778 (4)0.9437 (8)0.0244 (17)
C230.0932 (10)0.6776 (4)0.9770 (8)0.0301 (18)
H230.02940.64030.96010.036*
C240.0472 (10)0.7291 (5)1.0322 (8)0.0325 (19)
H24−0.04890.72791.05150.039*
C250.1403 (11)0.7833 (4)1.0605 (8)0.0345 (19)
H250.10900.81901.10120.041*
C260.2780 (10)0.7861 (4)1.0302 (7)0.0266 (17)
H260.34000.82391.05030.032*
C270.3303 (9)0.7333 (3)0.9691 (8)0.0188 (15)
C280.4673 (10)0.7429 (4)0.9257 (7)0.0200 (16)
C290.5648 (9)0.8019 (3)0.9702 (8)0.0230 (16)
H29A0.67650.79250.98350.034*
H29B0.55720.81711.05680.034*
H29C0.52480.83480.89960.034*
C300.6775 (9)0.6730 (3)0.7290 (8)0.0186 (15)
C310.7888 (9)0.6884 (3)0.6693 (8)0.0174 (14)
H310.83110.73020.67530.021*
C320.8356 (9)0.6406 (4)0.6005 (8)0.0236 (16)
H320.90980.64960.55650.028*
C330.7758 (10)0.5798 (4)0.5953 (10)0.0321 (19)
H330.80930.54670.54930.039*
C340.6673 (9)0.5683 (4)0.6575 (9)0.0251 (17)
H340.62240.52690.65170.030*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.0153 (2)0.0133 (2)0.0172 (2)0.00001 (19)0.00764 (19)0.00070 (19)
Sn20.0182 (2)0.0132 (2)0.0207 (2)−0.00161 (19)0.0071 (2)−0.00055 (19)
Cl10.0231 (8)0.0194 (8)0.0223 (8)0.0007 (6)0.0014 (7)0.0046 (6)
Cl20.0148 (7)0.0153 (7)0.0211 (7)0.0007 (6)0.0065 (6)0.0025 (6)
Cl30.0488 (13)0.0265 (10)0.0326 (11)−0.0111 (9)−0.0119 (9)0.0101 (8)
Cl40.0220 (8)0.0242 (9)0.0278 (9)−0.0064 (7)0.0026 (7)0.0074 (7)
O10.026 (3)0.013 (2)0.023 (2)0.0013 (19)0.014 (2)−0.0039 (18)
O20.038 (3)0.024 (3)0.056 (4)−0.016 (3)0.033 (3)−0.022 (3)
N10.012 (3)0.023 (3)0.020 (3)−0.002 (2)0.009 (2)0.001 (2)
N20.016 (3)0.021 (3)0.021 (3)−0.006 (2)0.011 (2)0.003 (2)
N30.020 (3)0.020 (3)0.018 (3)0.004 (2)0.012 (2)0.003 (2)
N40.013 (3)0.010 (3)0.024 (3)0.001 (2)0.005 (2)0.000 (2)
N50.017 (3)0.013 (3)0.024 (3)−0.003 (2)0.009 (3)0.002 (2)
N60.012 (3)0.022 (3)0.033 (4)−0.002 (2)0.003 (3)−0.004 (3)
C10.012 (3)0.024 (3)0.019 (3)−0.007 (2)0.006 (2)0.004 (3)
C20.017 (3)0.014 (3)0.011 (3)−0.004 (2)0.005 (2)0.002 (2)
C30.014 (3)0.010 (3)0.019 (3)0.000 (2)0.004 (2)0.005 (2)
C40.015 (3)0.016 (3)0.018 (3)0.001 (3)0.004 (3)−0.004 (3)
C50.020 (3)0.019 (3)0.016 (3)−0.004 (3)0.005 (3)0.000 (3)
C60.016 (3)0.033 (4)0.019 (3)−0.001 (3)0.008 (3)−0.001 (3)
C70.019 (3)0.038 (4)0.017 (3)0.004 (3)0.008 (3)0.001 (3)
C80.023 (4)0.037 (5)0.029 (4)0.006 (3)0.017 (3)−0.003 (3)
C90.030 (4)0.016 (3)0.024 (4)0.005 (3)0.014 (3)0.001 (3)
C100.014 (3)0.019 (3)0.013 (3)0.003 (3)0.005 (3)−0.005 (2)
C110.023 (4)0.012 (3)0.014 (3)0.000 (3)0.006 (3)0.000 (3)
C120.029 (4)0.019 (3)0.019 (3)−0.002 (3)0.007 (3)−0.001 (3)
C130.010 (3)0.023 (4)0.014 (3)−0.001 (3)0.002 (3)−0.002 (3)
C140.024 (4)0.026 (4)0.024 (4)−0.004 (3)0.009 (3)0.008 (3)
C150.017 (3)0.034 (4)0.026 (4)−0.004 (3)0.009 (3)0.008 (3)
C160.021 (4)0.035 (5)0.024 (4)0.006 (3)0.012 (3)−0.001 (3)
C170.020 (4)0.026 (4)0.019 (3)0.002 (3)0.004 (3)0.004 (3)
C180.044 (6)0.076 (8)0.069 (7)0.009 (6)−0.002 (5)0.031 (6)
C190.042 (5)0.025 (4)0.055 (5)−0.002 (4)0.000 (4)0.005 (4)
C200.045 (5)0.030 (4)0.043 (5)0.000 (4)0.006 (4)0.001 (4)
C210.024 (4)0.014 (3)0.043 (5)−0.003 (3)0.015 (4)−0.012 (3)
C220.027 (4)0.028 (4)0.019 (3)−0.002 (3)0.010 (3)−0.009 (3)
C230.026 (4)0.047 (5)0.017 (3)−0.006 (4)0.008 (3)−0.006 (3)
C240.030 (5)0.045 (5)0.023 (4)0.014 (4)0.009 (3)−0.003 (4)
C250.041 (5)0.039 (5)0.031 (4)0.016 (4)0.023 (4)0.009 (3)
C260.035 (4)0.028 (4)0.021 (4)0.012 (3)0.014 (3)0.000 (3)
C270.019 (4)0.017 (3)0.019 (3)−0.001 (3)0.005 (3)−0.005 (3)
C280.026 (4)0.020 (4)0.011 (3)−0.001 (3)0.003 (3)0.001 (3)
C290.030 (4)0.015 (3)0.024 (4)−0.005 (3)0.009 (3)−0.003 (3)
C300.019 (4)0.016 (3)0.018 (3)0.002 (3)0.003 (3)0.003 (3)
C310.014 (3)0.009 (3)0.027 (4)0.001 (2)0.005 (3)0.004 (3)
C320.015 (3)0.033 (4)0.026 (4)−0.001 (3)0.011 (3)0.000 (3)
C330.016 (4)0.037 (5)0.040 (5)0.007 (3)0.005 (3)−0.010 (4)
C340.019 (4)0.020 (4)0.041 (5)0.002 (3)0.016 (3)−0.005 (3)

Geometric parameters (Å, °)

Sn1—Cl12.4504 (17)C10—C111.481 (10)
Sn1—Cl22.5225 (16)C11—C121.486 (10)
Sn1—O12.004 (5)C12—H12A0.9800
Sn1—N12.266 (6)C12—H12B0.9800
Sn1—N32.198 (6)C12—H12C0.9800
Sn1—C42.169 (7)C13—C141.394 (10)
Sn2—Cl32.456 (2)C14—C151.359 (11)
Sn2—Cl42.5116 (18)C14—H140.9500
Sn2—O22.017 (5)C15—C161.426 (11)
Sn2—N42.248 (6)C15—H150.9500
Sn2—N62.212 (7)C16—C171.358 (11)
Sn2—C212.142 (7)C16—H160.9500
O1—C51.332 (9)C17—H170.9500
O2—C221.314 (9)C18—C191.508 (15)
N1—C111.321 (9)C18—H18A0.9800
N1—N21.390 (8)C18—H18B0.9800
N2—C131.378 (10)C18—H18C0.9800
N2—H2n0.86 (3)C19—C201.553 (13)
N3—C131.349 (10)C19—H19A0.9900
N3—C171.358 (10)C19—H19B0.9900
N4—C281.295 (10)C20—C211.492 (11)
N4—N51.394 (8)C20—H20A0.9900
N5—C301.381 (10)C20—H20B0.9900
N5—H5n0.86 (3)C21—H21A0.9900
N6—C301.321 (10)C21—H21B0.9900
N6—C341.366 (10)C22—C231.410 (11)
C1—C21.517 (8)C22—C271.426 (11)
C1—H1A0.9800C23—C241.356 (11)
C1—H1B0.9800C23—H230.9500
C1—H1C0.9800C24—C251.382 (13)
C2—C31.529 (8)C24—H240.9500
C2—H2A0.9900C25—C261.378 (11)
C2—H2B0.9900C25—H250.9500
C3—C41.524 (9)C26—C271.437 (10)
C3—H3A0.9900C26—H260.9500
C3—H3B0.9900C27—C281.462 (11)
C4—H4A0.9900C28—C291.494 (10)
C4—H4B0.9900C29—H29A0.9800
C5—C101.394 (10)C29—H29B0.9800
C5—C61.408 (10)C29—H29C0.9800
C6—C71.373 (10)C30—C311.385 (11)
C6—H60.9500C31—C321.381 (10)
C7—C81.374 (11)C31—H310.9500
C7—H70.9500C32—C331.379 (12)
C8—C91.396 (10)C32—H320.9500
C8—H80.9500C33—C341.366 (12)
C9—C101.430 (9)C33—H330.9500
C9—H90.9500C34—H340.9500
O1—Sn1—C4102.6 (2)C9—C10—C11116.3 (6)
O1—Sn1—N3154.6 (2)N1—C11—C10118.4 (6)
C4—Sn1—N3102.6 (2)N1—C11—C12120.7 (7)
O1—Sn1—N181.9 (2)C10—C11—C12120.9 (6)
C4—Sn1—N1174.0 (2)C11—C12—H12A109.5
N3—Sn1—N173.1 (2)C11—C12—H12B109.5
O1—Sn1—Cl189.21 (15)H12A—C12—H12B109.5
C4—Sn1—Cl198.35 (19)C11—C12—H12C109.5
N3—Sn1—Cl184.38 (18)H12A—C12—H12C109.5
N1—Sn1—Cl185.49 (17)H12B—C12—H12C109.5
O1—Sn1—Cl295.17 (15)N3—C13—N2118.2 (6)
C4—Sn1—Cl294.46 (19)N3—C13—C14121.6 (7)
N3—Sn1—Cl285.67 (17)N2—C13—C14120.1 (7)
N1—Sn1—Cl281.18 (17)C15—C14—C13118.6 (7)
Cl1—Sn1—Cl2165.23 (6)C15—C14—H14120.7
O2—Sn2—C21103.1 (3)C13—C14—H14120.7
O2—Sn2—N6155.4 (2)C14—C15—C16120.5 (7)
C21—Sn2—N6101.0 (3)C14—C15—H15119.7
O2—Sn2—N483.8 (2)C16—C15—H15119.7
C21—Sn2—N4171.6 (3)C17—C16—C15117.1 (7)
N6—Sn2—N472.6 (2)C17—C16—H16121.4
O2—Sn2—Cl393.4 (2)C15—C16—H16121.4
C21—Sn2—Cl394.1 (2)C16—C17—N3123.1 (8)
N6—Sn2—Cl389.3 (2)C16—C17—H17118.5
N4—Sn2—Cl380.46 (17)N3—C17—H17118.5
O2—Sn2—Cl488.4 (2)C19—C18—H18A109.5
C21—Sn2—Cl4100.1 (2)C19—C18—H18B109.5
N6—Sn2—Cl482.92 (19)H18A—C18—H18B109.5
N4—Sn2—Cl484.77 (17)C19—C18—H18C109.5
Cl3—Sn2—Cl4164.83 (6)H18A—C18—H18C109.5
C5—O1—Sn1128.2 (4)H18B—C18—H18C109.5
C22—O2—Sn2133.1 (5)C18—C19—C20114.1 (8)
C11—N1—N2116.9 (6)C18—C19—H19A108.7
C11—N1—Sn1129.7 (5)C20—C19—H19A108.7
N2—N1—Sn1113.2 (4)C18—C19—H19B108.7
C13—N2—N1117.4 (6)C20—C19—H19B108.7
C13—N2—H2N115 (5)H19A—C19—H19B107.6
N1—N2—H2N124 (5)C21—C20—C19112.3 (8)
C13—N3—C17118.9 (6)C21—C20—H20A109.2
C13—N3—Sn1117.0 (5)C19—C20—H20A109.2
C17—N3—Sn1124.0 (5)C21—C20—H20B109.2
C28—N4—N5117.2 (6)C19—C20—H20B109.2
C28—N4—Sn2128.3 (5)H20A—C20—H20B107.9
N5—N4—Sn2113.3 (4)C20—C21—Sn2119.0 (6)
C30—N5—N4118.8 (6)C20—C21—H21A107.6
C30—N5—H5N123 (5)Sn2—C21—H21A107.6
N4—N5—H5N106 (5)C20—C21—H21B107.6
C30—N6—C34118.9 (7)Sn2—C21—H21B107.6
C30—N6—Sn2118.7 (5)H21A—C21—H21B107.0
C34—N6—Sn2121.8 (5)O2—C22—C23115.3 (7)
C2—C1—H1A109.5O2—C22—C27125.1 (7)
C2—C1—H1B109.5C23—C22—C27119.6 (7)
H1A—C1—H1B109.5C24—C23—C22122.0 (8)
C2—C1—H1C109.5C24—C23—H23119.0
H1A—C1—H1C109.5C22—C23—H23119.0
H1B—C1—H1C109.5C23—C24—C25119.9 (8)
C1—C2—C3111.8 (5)C23—C24—H24120.0
C1—C2—H2A109.2C25—C24—H24120.0
C3—C2—H2A109.2C24—C25—C26120.5 (8)
C1—C2—H2B109.2C24—C25—H25119.8
C3—C2—H2B109.2C26—C25—H25119.7
H2A—C2—H2B107.9C25—C26—C27121.8 (8)
C4—C3—C2114.9 (5)C25—C26—H26119.1
C4—C3—H3A108.5C27—C26—H26119.1
C2—C3—H3A108.5C22—C27—C26116.2 (7)
C4—C3—H3B108.5C22—C27—C28125.5 (7)
C2—C3—H3B108.5C26—C27—C28118.0 (7)
H3A—C3—H3B107.5N4—C28—C27121.3 (7)
C3—C4—Sn1111.6 (4)N4—C28—C29120.0 (7)
C3—C4—H4A109.3C27—C28—C29118.7 (6)
Sn1—C4—H4A109.3C28—C29—H29A109.5
C3—C4—H4B109.3C28—C29—H29B109.5
Sn1—C4—H4B109.3H29A—C29—H29B109.5
H4A—C4—H4B108.0C28—C29—H29C109.5
O1—C5—C10124.1 (6)H29A—C29—H29C109.5
O1—C5—C6116.7 (6)H29B—C29—H29C109.5
C10—C5—C6119.1 (7)N6—C30—N5116.2 (7)
C7—C6—C5121.3 (7)N6—C30—C31122.9 (7)
C7—C6—H6119.4N5—C30—C31120.9 (7)
C5—C6—H6119.4C32—C31—C30117.3 (7)
C6—C7—C8120.9 (7)C32—C31—H31121.4
C6—C7—H7119.6C30—C31—H31121.4
C8—C7—H7119.6C33—C32—C31120.7 (7)
C7—C8—C9119.5 (7)C33—C32—H32119.6
C7—C8—H8120.2C31—C32—H32119.6
C9—C8—H8120.2C34—C33—C32118.5 (8)
C8—C9—C10120.5 (7)C34—C33—H33120.8
C8—C9—H9119.8C32—C33—H33120.8
C10—C9—H9119.8N6—C34—C33121.5 (8)
C5—C10—C9118.8 (7)N6—C34—H34119.2
C5—C10—C11124.9 (6)C33—C34—H34119.2
C4—Sn1—O1—C5140.7 (6)C6—C5—C10—C11176.4 (7)
N3—Sn1—O1—C5−45.8 (9)C8—C9—C10—C51.4 (11)
N1—Sn1—O1—C5−35.4 (6)C8—C9—C10—C11−176.5 (7)
Cl1—Sn1—O1—C5−120.9 (6)N2—N1—C11—C10−172.5 (6)
Cl2—Sn1—O1—C544.9 (6)Sn1—N1—C11—C1013.2 (10)
C21—Sn2—O2—C22167.9 (8)N2—N1—C11—C124.1 (10)
N6—Sn2—O2—C22−22.9 (12)Sn1—N1—C11—C12−170.3 (5)
N4—Sn2—O2—C22−7.1 (8)C5—C10—C11—N1−18.9 (11)
Cl3—Sn2—O2—C2272.9 (8)C9—C10—C11—N1158.9 (7)
Cl4—Sn2—O2—C22−92.0 (8)C5—C10—C11—C12164.6 (7)
O1—Sn1—N1—C118.3 (6)C9—C10—C11—C12−17.6 (10)
N3—Sn1—N1—C11−176.4 (7)C17—N3—C13—N2177.3 (7)
Cl1—Sn1—N1—C1198.1 (7)Sn1—N3—C13—N21.5 (9)
Cl2—Sn1—N1—C11−88.3 (7)C17—N3—C13—C14−2.7 (11)
O1—Sn1—N1—N2−166.3 (5)Sn1—N3—C13—C14−178.4 (6)
Cl1—Sn1—N1—N2−76.4 (5)N1—N2—C13—N37.2 (10)
Cl2—Sn1—N1—N297.2 (5)N1—N2—C13—C14−172.9 (7)
C11—N1—N2—C13172.9 (7)N3—C13—C14—C154.3 (12)
Sn1—N1—N2—C13−11.8 (8)N2—C13—C14—C15−175.6 (7)
C4—Sn1—N3—C13178.6 (5)C13—C14—C15—C16−4.1 (12)
N1—Sn1—N3—C13−5.7 (5)C14—C15—C16—C172.3 (12)
Cl1—Sn1—N3—C1381.3 (5)C15—C16—C17—N3−0.6 (12)
Cl2—Sn1—N3—C13−87.8 (5)C13—N3—C17—C160.8 (11)
O1—Sn1—N3—C17−170.4 (5)Sn1—N3—C17—C16176.3 (6)
C4—Sn1—N3—C173.1 (6)C18—C19—C20—C21−64.4 (11)
N1—Sn1—N3—C17178.8 (6)C19—C20—C21—Sn2−72.9 (9)
Cl1—Sn1—N3—C17−94.3 (6)O2—Sn2—C21—C2086.9 (7)
Cl2—Sn1—N3—C1796.7 (6)N6—Sn2—C21—C20−88.5 (7)
O2—Sn2—N4—C2818.6 (7)Cl3—Sn2—C21—C20−178.7 (6)
N6—Sn2—N4—C28−168.2 (7)Cl4—Sn2—C21—C20−3.9 (7)
Cl3—Sn2—N4—C28−75.9 (7)Sn2—O2—C22—C23177.2 (6)
Cl4—Sn2—N4—C28107.6 (7)Sn2—O2—C22—C27−2.2 (13)
O2—Sn2—N4—N5−174.0 (5)O2—C22—C23—C24−179.1 (8)
N6—Sn2—N4—N5−0.8 (5)C27—C22—C23—C240.4 (12)
Cl3—Sn2—N4—N591.5 (5)C22—C23—C24—C25−1.5 (13)
Cl4—Sn2—N4—N5−85.0 (5)C23—C24—C25—C261.4 (12)
C28—N4—N5—C30173.8 (7)C24—C25—C26—C27−0.2 (12)
Sn2—N4—N5—C304.9 (8)O2—C22—C27—C26−179.8 (7)
O2—Sn2—N6—C3013.0 (11)C23—C22—C27—C260.8 (11)
C21—Sn2—N6—C30−177.8 (6)O2—C22—C27—C286.9 (13)
N4—Sn2—N6—C30−3.5 (6)C23—C22—C27—C28−172.5 (8)
Cl3—Sn2—N6—C30−83.7 (6)C25—C26—C27—C22−0.9 (11)
Cl4—Sn2—N6—C3083.2 (6)C25—C26—C27—C28173.0 (7)
O2—Sn2—N6—C34−158.4 (6)N5—N4—C28—C27172.9 (7)
C21—Sn2—N6—C3410.9 (7)Sn2—N4—C28—C27−20.1 (11)
N4—Sn2—N6—C34−174.8 (7)N5—N4—C28—C29−6.5 (10)
Cl3—Sn2—N6—C34105.0 (6)Sn2—N4—C28—C29160.5 (5)
Cl4—Sn2—N6—C34−88.1 (6)C22—C27—C28—N45.4 (12)
C1—C2—C3—C4177.2 (5)C26—C27—C28—N4−167.8 (7)
C2—C3—C4—Sn1−71.1 (6)C22—C27—C28—C29−175.2 (7)
O1—Sn1—C4—C3−1.2 (5)C26—C27—C28—C2911.5 (11)
N3—Sn1—C4—C3−178.3 (4)C34—N6—C30—N5178.9 (7)
Cl1—Sn1—C4—C3−92.2 (4)Sn2—N6—C30—N57.3 (9)
Cl2—Sn1—C4—C395.1 (4)C34—N6—C30—C31−4.4 (12)
Sn1—O1—C5—C1042.3 (10)Sn2—N6—C30—C31−175.9 (6)
Sn1—O1—C5—C6−141.8 (5)N4—N5—C30—N6−8.1 (10)
O1—C5—C6—C7−176.0 (6)N4—N5—C30—C31175.1 (7)
C10—C5—C6—C70.1 (11)N6—C30—C31—C323.2 (12)
C5—C6—C7—C81.1 (11)N5—C30—C31—C32179.8 (7)
C6—C7—C8—C9−1.0 (12)C30—C31—C32—C33−1.5 (12)
C7—C8—C9—C10−0.2 (11)C31—C32—C33—C341.1 (13)
O1—C5—C10—C9174.5 (7)C30—N6—C34—C333.9 (12)
C6—C5—C10—C9−1.3 (10)Sn2—N6—C34—C33175.2 (6)
O1—C5—C10—C11−7.8 (11)C32—C33—C34—N6−2.2 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2n···Cl40.86 (3)2.47 (4)3.283 (7)159 (7)
N5—H5n···Cl20.86 (3)2.48 (5)3.235 (7)147 (7)
C15—H15···Cl2i0.952.793.538 (9)137
C17—H17···Cl1ii0.952.803.540 (9)135
C34—H34···Cl3iii0.952.753.534 (9)141

Symmetry codes: (i) x−1, y, z; (ii) x, −y+2, z+1/2; (iii) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5679).

References

  • Affan, M. A., Foo, I. P. P., Fasihuddin, B. A. & Hapipah, M. A. (2009). Ind. J. Chem. Sect. A, 48, 1388–1393.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gielen, M. & Tiekink, E. R. T. (2005). Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine, edited by M. Gielen & E. R. T. Tiekink, pp. 421–439. Chichester: John Wiley & Sons.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography