PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1367.
Published online 2010 October 9. doi:  10.1107/S1600536810039334
PMCID: PMC3009307

1-(4-Bromo-2-fluoro­benz­yl)pyridinium bis­(2-thioxo-1,3-dithiole-4,5-dithiol­ato)nickelate(III)

Abstract

The title compound, (C12H10BrFN)[Ni(C3S5)2], is an ion-pair complex consisting of N-(2-fluoro-4-bromo­benz­yl)pyridinium cations and [Ni(dmit)2] anions (dmit = 2-thioxo-1,3-dithiole-4,5-dithiol­ate). In the anion, the NiIII ion exhibits a square-planar coordination involving four S atoms from two dmit ligands. In the crystal structure, weak S(...)S [3.474 (3), 3.478 (3) and 3.547 (3) Å] and S(...)π [S(...)centroid distances = 3.360 (3), 3.378 (2), 3.537 (2) and 3.681 (3) Å] inter­actions and C—H(...)F hydrogen bonds lead to a three-dimensional supra­molecular network.

Related literature

For general background to the network topologies and applications of bis­(dithiol­ate)–metal complexes, see: Cassoux (1999 [triangle]). For the synthesis, structures and properties of related complexes containing dmit ligands, see: Akutagawa & Nakamura (2000 [triangle]); Li et al. (2006 [triangle]); Zang et al. (2006 [triangle], 2009 [triangle]). For lone-pair(...)π inter­actions, see: Egli & Sarkhel (2007 [triangle]). For the synthesis, see: Wang et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1367-scheme1.jpg

Experimental

Crystal data

  • (C12H10BrFN)[Ni(C3S5)2]
  • M r = 718.56
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1367-efi1.jpg
  • a = 6.2952 (15) Å
  • b = 9.716 (2) Å
  • c = 11.482 (3) Å
  • α = 65.953 (4)°
  • β = 77.592 (4)°
  • γ = 88.498 (4)°
  • V = 624.9 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 3.23 mm−1
  • T = 296 K
  • 0.19 × 0.16 × 0.15 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.579, T max = 0.643
  • 3111 measured reflections
  • 2619 independent reflections
  • 2434 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.086
  • S = 1.03
  • 2619 reflections
  • 290 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.52 e Å−3
  • Absolute structure: Flack (1983 [triangle]); 456 Friedel pairs
  • Flack parameter: 0.364 (16)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810039334/hy2356sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039334/hy2356Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the North China University of Water Conservancy and Electric Power, China.

supplementary crystallographic information

Comment

Extensive research has been focused on the synthesis and characterization of bis(dithiolate)–metal complexes and their analogues, due to their properties and potential applications as conducting, magnetic and non-linear optical (NLO) materials (Cassoux, 1999). 2-Thioxo-1,3-dithiole-4,5-dithiolate (dmit) metal complex also is excellent building block employed for the construction of molecular magnetic materials (Li et al., 2006; Zang et al., 2006, 2009) apart from its well known electric conductivity as molecular conductors (Akutagawa & Nakamura, 2000). We report herein the synthesis and crystal structure of the title compound, a new ion-pair complex.

The title compound comprises [NiIII(dmit)2]- anions and N-(2-fluoro-4-bromobenzyl)pyridinium cations (Fig. 1). The NiIII ion adopts a square-planar geometry coordinated by four S atoms from two dmit ligands, with Ni—S bond lengths ranging from 2.150 (2) to 2.169 (3) Å (Table 1). The [NiIII(dmit)2]- anions are in a parallel arrangement, with S···S interactions ranging from 3.474 (3) to 3.547 (3) Å. Two neighbouring anions are parallel in a head-to-tail inversion arrangement so that lone-pair (lp)···π (Egli & Sarkhel, 2007) interactions form between one terminal S atom of the anion and the other terminal π system of adjacent anion [S1···Cg1i = 3.378 (2) and S10i···Cg2 = 3.537 (2) Å. Cg1 and Cg2 are the centroids of C4–C6, S8, S9 ring and C1–C3, S2, S3 ring, respectively. Symmetry code: (i) x, -1+y, 1+z]. The anion and the neighbouring cation are also associated together through lp···π interactions between two terminal S atoms of the anion and the pyridine rings of two different cations [S1···Cg3ii = 3.360 (3) and S10···Cg3iii = 3.681 (3) Å. Cg3 is the centroid of C14–C18, N1 ring. Symmetry codes: (ii) 1+x, -1+y, z; (iii) x, 1+y, -1+z]. The weak S···S and S(lp)···π interactions lead to a three-dimensional supramolecular structure. In addition, the cations adopt a parallel arrangement, and the shortest distance between H14 from the pyridine ring of a cation and F1 atom from the neighbouring cation is 2.60 Å, indicating the existence of a C—H···F hydrogen bond (Table 2), which stabilizes the three-dimensional structure (Fig. 2).

Experimental

4,5-Bis(thiobenzoyl)-1,3-dithiole-2-thione (812 mg, 2.0 mmol) (Wang et al., 1998) was suspended in dry methanol (20 ml) and sodium (92 mg, 4.0 mmol) was added under a nitrogen atmosphere at room temperature to give a bright-red solution. NiCl2.6H2O (238 mg, 1 mmol) was then added, followed successively by addition of I2 (127 mg, 0.5 mmol) and a solution of N-(2-fluoro-4-bromobenzyl)pyridinium bromide (346 mg, 1 mmol) in methanol at an interval of approximately 20 min. The solution was stirred for a further 30 min and the resulting solid was collected by filtration. Single crystals of the title compound were obtained by evaporation of a dilute acetone solution over 1–2 weeks at room temperature.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93(aromatic) and 0.97(CH2) Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The structures of the cation and anion in the title compound, with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Three-dimensional supramolecular structure of the title compound. H atoms have been omitted for clarity. Dashed lines indicate weak S···S, S···π and C—H···F interactions. ...

Crystal data

(C12H10BrFN)[Ni(C3S5)2]Z = 1
Mr = 718.56F(000) = 357
Triclinic, P1Dx = 1.909 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2952 (15) ÅCell parameters from 617 reflections
b = 9.716 (2) Åθ = 3.5–25.2°
c = 11.482 (3) ŵ = 3.23 mm1
α = 65.953 (4)°T = 296 K
β = 77.592 (4)°Block, black
γ = 88.498 (4)°0.19 × 0.16 × 0.15 mm
V = 624.9 (3) Å3

Data collection

Bruker APEXII CCD diffractometer2619 independent reflections
Radiation source: fine-focus sealed tube2434 reflections with I > 2σ(I)
graphiteRint = 0.022
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −6→7
Tmin = 0.579, Tmax = 0.643k = −11→11
3111 measured reflectionsl = −13→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.086w = 1/[σ2(Fo2) + (0.0398P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2619 reflectionsΔρmax = 0.47 e Å3
290 parametersΔρmin = −0.52 e Å3
3 restraintsAbsolute structure: Flack (1983); 456 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.364 (16)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.82342 (18)0.80439 (11)0.41205 (10)0.0318 (2)
C10.9321 (14)0.2595 (8)0.7954 (7)0.039 (2)
C20.7858 (16)0.4827 (8)0.6172 (7)0.037 (2)
C30.9769 (16)0.5382 (9)0.6182 (8)0.036 (2)
C40.6622 (16)1.0780 (9)0.2125 (7)0.036 (2)
C50.8601 (15)1.1313 (9)0.2140 (8)0.035 (2)
C60.7024 (15)1.3601 (8)0.0500 (8)0.040 (2)
C70.3261 (16)1.2596 (10)0.4477 (7)0.055 (2)
C80.5284 (16)1.2057 (10)0.4587 (8)0.057 (2)
H80.65391.26560.40520.068*
C90.5428 (14)1.0646 (10)0.5484 (8)0.053 (2)
H90.68021.02880.55480.064*
C100.3607 (14)0.9712 (9)0.6311 (7)0.046 (2)
C110.1592 (13)1.0304 (9)0.6158 (8)0.0470 (19)
C120.1398 (16)1.1716 (10)0.5272 (8)0.053 (2)
H120.00311.20830.52030.063*
C130.3711 (18)0.8139 (10)0.7295 (9)0.053 (2)
H13A0.26700.74690.72300.064*
H13B0.51550.78000.71030.064*
C140.4625 (15)0.8705 (9)0.9011 (8)0.049 (2)
H140.59090.92000.84190.059*
C150.4212 (16)0.8663 (9)1.0238 (9)0.054 (2)
H150.52140.91051.04930.065*
C160.229 (2)0.7954 (11)1.1092 (10)0.063 (3)
H160.19650.79281.19300.076*
C170.0853 (17)0.7290 (10)1.0716 (10)0.067 (3)
H17−0.04530.68121.12920.080*
C180.1351 (16)0.7331 (9)0.9473 (9)0.055 (2)
H180.03950.68620.92100.066*
S10.9660 (4)0.0969 (2)0.9092 (2)0.0527 (6)
S20.7008 (4)0.2974 (2)0.7299 (2)0.0454 (6)
S31.1216 (4)0.4113 (2)0.7263 (2)0.0470 (6)
S40.6256 (4)0.5934 (2)0.5149 (2)0.0457 (6)
S51.0756 (4)0.7183 (2)0.5178 (2)0.0418 (5)
S60.5691 (4)0.8923 (2)0.30748 (19)0.0407 (5)
S71.0202 (3)1.0169 (2)0.31248 (19)0.0386 (5)
S80.5130 (3)1.2069 (2)0.11229 (19)0.0412 (5)
S90.9310 (3)1.3204 (2)0.1136 (2)0.0447 (6)
S100.6629 (4)1.5263 (2)−0.0602 (2)0.0577 (6)
N10.3225 (10)0.8051 (6)0.8643 (6)0.0399 (14)
F1−0.0228 (8)0.9428 (6)0.6944 (5)0.0695 (14)
Br10.3003 (3)1.45136 (15)0.31995 (14)0.0902 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0314 (4)0.0287 (4)0.0289 (4)0.0020 (3)−0.0081 (3)−0.0049 (3)
C10.041 (5)0.034 (4)0.038 (4)0.012 (4)−0.012 (4)−0.009 (4)
C20.043 (6)0.027 (4)0.029 (4)0.000 (4)−0.012 (4)0.003 (3)
C30.043 (6)0.028 (4)0.031 (4)0.002 (4)−0.011 (4)−0.004 (4)
C40.035 (6)0.034 (5)0.032 (4)0.006 (4)−0.006 (4)−0.008 (4)
C50.032 (5)0.031 (4)0.038 (4)0.003 (4)−0.005 (4)−0.012 (4)
C60.047 (6)0.025 (4)0.039 (5)0.002 (4)−0.002 (4)−0.009 (3)
C70.080 (7)0.068 (6)0.026 (5)0.028 (6)−0.021 (5)−0.024 (4)
C80.060 (6)0.069 (6)0.041 (5)−0.001 (5)−0.013 (4)−0.020 (5)
C90.047 (5)0.070 (6)0.048 (5)0.018 (4)−0.020 (4)−0.026 (5)
C100.061 (5)0.050 (5)0.035 (4)0.025 (4)−0.022 (4)−0.020 (4)
C110.048 (5)0.059 (5)0.039 (4)0.004 (4)−0.015 (4)−0.022 (4)
C120.063 (6)0.062 (5)0.046 (5)0.022 (4)−0.024 (4)−0.029 (4)
C130.072 (7)0.050 (5)0.057 (5)0.015 (5)−0.032 (5)−0.033 (5)
C140.048 (5)0.041 (4)0.061 (5)0.007 (4)−0.022 (4)−0.019 (4)
C150.072 (6)0.046 (5)0.057 (6)0.010 (4)−0.028 (5)−0.027 (4)
C160.092 (9)0.048 (6)0.037 (5)0.027 (6)−0.008 (5)−0.010 (4)
C170.055 (6)0.052 (5)0.063 (7)0.008 (4)−0.004 (5)0.002 (5)
C180.055 (6)0.029 (4)0.071 (6)0.002 (4)−0.026 (5)−0.006 (4)
S10.0627 (17)0.0352 (11)0.0467 (12)0.0142 (10)−0.0127 (11)−0.0037 (9)
S20.0468 (15)0.0308 (11)0.0462 (12)−0.0004 (9)−0.0130 (10)−0.0021 (9)
S30.0410 (15)0.0434 (12)0.0439 (12)0.0082 (10)−0.0157 (10)−0.0027 (10)
S40.0414 (15)0.0337 (11)0.0515 (13)−0.0021 (9)−0.0221 (11)−0.0010 (9)
S50.0361 (14)0.0358 (11)0.0437 (12)−0.0010 (9)−0.0170 (10)−0.0025 (9)
S60.0377 (14)0.0321 (11)0.0419 (12)−0.0024 (9)−0.0169 (10)−0.0006 (9)
S70.0319 (13)0.0338 (10)0.0416 (11)0.0001 (9)−0.0131 (9)−0.0043 (9)
S80.0336 (14)0.0343 (10)0.0454 (12)0.0032 (9)−0.0144 (10)−0.0035 (9)
S90.0417 (14)0.0301 (11)0.0534 (13)0.0006 (9)−0.0154 (10)−0.0060 (9)
S100.0582 (16)0.0325 (11)0.0651 (14)0.0106 (11)−0.0203 (12)−0.0001 (10)
N10.045 (4)0.035 (3)0.045 (4)0.015 (3)−0.020 (3)−0.017 (3)
F10.054 (3)0.080 (4)0.071 (3)0.004 (3)−0.016 (3)−0.027 (3)
Br10.1427 (12)0.0616 (6)0.0614 (6)0.0258 (6)−0.0418 (7)−0.0123 (5)

Geometric parameters (Å, °)

Ni1—S42.163 (3)C8—C91.353 (12)
Ni1—S52.150 (2)C8—H80.9300
Ni1—S62.157 (2)C9—C101.387 (13)
Ni1—S72.169 (3)C9—H90.9300
C1—S11.634 (7)C10—C111.395 (11)
C1—S31.720 (9)C10—C131.496 (11)
C1—S21.743 (8)C11—F11.354 (10)
C2—C31.335 (12)C11—C121.356 (11)
C2—S41.725 (8)C12—H120.9300
C2—S21.748 (8)C13—N11.479 (10)
C3—S51.698 (8)C13—H13A0.9700
C3—S31.752 (8)C13—H13B0.9700
C4—C51.368 (12)C14—N11.329 (10)
C4—S61.722 (9)C14—C151.360 (11)
C4—S81.733 (8)C14—H140.9300
C5—S71.714 (8)C15—C161.374 (14)
C5—S91.732 (8)C15—H150.9300
C6—S101.649 (7)C16—C171.357 (15)
C6—S91.716 (9)C16—H160.9300
C6—S81.734 (9)C17—C181.378 (13)
C7—C81.376 (12)C17—H170.9300
C7—C121.377 (14)C18—N11.344 (11)
C7—Br11.873 (9)C18—H180.9300
S5—Ni1—S6179.27 (12)F1—C11—C10118.0 (8)
S5—Ni1—S492.78 (9)C12—C11—C10122.6 (9)
S6—Ni1—S487.41 (10)C11—C12—C7118.8 (8)
S5—Ni1—S786.86 (10)C11—C12—H12120.6
S6—Ni1—S792.94 (8)C7—C12—H12120.6
S4—Ni1—S7178.83 (12)N1—C13—C10111.6 (6)
S1—C1—S3123.7 (5)N1—C13—H13A109.3
S1—C1—S2123.6 (6)C10—C13—H13A109.3
S3—C1—S2112.7 (4)N1—C13—H13B109.3
C3—C2—S4121.0 (6)C10—C13—H13B109.3
C3—C2—S2116.9 (6)H13A—C13—H13B108.0
S4—C2—S2122.1 (6)N1—C14—C15121.2 (9)
C2—C3—S5122.0 (6)N1—C14—H14119.4
C2—C3—S3115.6 (6)C15—C14—H14119.4
S5—C3—S3122.4 (6)C14—C15—C16118.7 (9)
C5—C4—S6120.8 (6)C14—C15—H15120.7
C5—C4—S8116.5 (6)C16—C15—H15120.7
S6—C4—S8122.7 (6)C17—C16—C15120.2 (10)
C4—C5—S7121.2 (6)C17—C16—H16119.9
C4—C5—S9115.4 (6)C15—C16—H16119.9
S7—C5—S9123.4 (6)C16—C17—C18119.4 (10)
S10—C6—S9124.2 (5)C16—C17—H17120.3
S10—C6—S8122.3 (5)C18—C17—H17120.3
S9—C6—S8113.5 (4)N1—C18—C17119.6 (9)
C8—C7—C12120.6 (8)N1—C18—H18120.2
C8—C7—Br1120.3 (8)C17—C18—H18120.2
C12—C7—Br1119.1 (7)C1—S2—C296.9 (4)
C9—C8—C7119.3 (9)C1—S3—C397.9 (4)
C9—C8—H8120.4C2—S4—Ni1101.8 (3)
C7—C8—H8120.4C3—S5—Ni1102.5 (3)
C8—C9—C10122.6 (8)C4—S6—Ni1102.6 (3)
C8—C9—H9118.7C5—S7—Ni1102.4 (3)
C10—C9—H9118.7C4—S8—C696.8 (4)
C9—C10—C11116.1 (7)C6—S9—C597.8 (4)
C9—C10—C13123.8 (8)C14—N1—C18120.9 (7)
C11—C10—C13120.1 (9)C14—N1—C13119.7 (8)
F1—C11—C12119.4 (7)C18—N1—C13119.4 (8)
S4—C2—C3—S5−1.1 (11)C2—C3—S3—C1−2.7 (8)
S2—C2—C3—S5−177.9 (5)S5—C3—S3—C1179.0 (5)
S4—C2—C3—S3−179.4 (5)C3—C2—S4—Ni11.2 (8)
S2—C2—C3—S33.8 (9)S2—C2—S4—Ni1177.8 (5)
S6—C4—C5—S7−1.2 (10)S5—Ni1—S4—C2−0.7 (3)
S8—C4—C5—S7178.1 (4)S6—Ni1—S4—C2−180.0 (3)
S6—C4—C5—S9−179.9 (4)C2—C3—S5—Ni10.4 (8)
S8—C4—C5—S9−0.5 (9)S3—C3—S5—Ni1178.6 (5)
C12—C7—C8—C90.3 (12)S4—Ni1—S5—C30.3 (3)
Br1—C7—C8—C9−177.5 (6)S7—Ni1—S5—C3179.2 (3)
C7—C8—C9—C10−0.5 (12)C5—C4—S6—Ni12.5 (7)
C8—C9—C10—C110.8 (12)S8—C4—S6—Ni1−176.8 (4)
C8—C9—C10—C13178.9 (8)S4—Ni1—S6—C4176.6 (3)
C9—C10—C11—F1179.8 (7)S7—Ni1—S6—C4−2.2 (3)
C13—C10—C11—F11.7 (11)C4—C5—S7—Ni1−0.7 (7)
C9—C10—C11—C12−1.1 (11)S9—C5—S7—Ni1177.8 (4)
C13—C10—C11—C12−179.2 (7)S5—Ni1—S7—C5−177.5 (3)
F1—C11—C12—C7−179.9 (7)S6—Ni1—S7—C51.8 (3)
C10—C11—C12—C71.0 (11)C5—C4—S8—C61.3 (7)
C8—C7—C12—C11−0.6 (12)S6—C4—S8—C6−179.4 (5)
Br1—C7—C12—C11177.3 (5)S10—C6—S8—C4178.1 (5)
C9—C10—C13—N1106.1 (9)S9—C6—S8—C4−1.6 (5)
C11—C10—C13—N1−75.9 (10)S10—C6—S9—C5−178.3 (5)
N1—C14—C15—C16−1.3 (12)S8—C6—S9—C51.4 (5)
C14—C15—C16—C171.1 (13)C4—C5—S9—C6−0.5 (7)
C15—C16—C17—C180.2 (13)S7—C5—S9—C6−179.1 (5)
C16—C17—C18—N1−1.3 (12)C15—C14—N1—C180.2 (11)
S1—C1—S2—C2−178.6 (5)C15—C14—N1—C13179.1 (7)
S3—C1—S2—C20.9 (5)C17—C18—N1—C141.1 (11)
C3—C2—S2—C1−2.9 (8)C17—C18—N1—C13−177.8 (7)
S4—C2—S2—C1−179.6 (5)C10—C13—N1—C14−68.7 (10)
S1—C1—S3—C3−179.8 (5)C10—C13—N1—C18110.3 (9)
S2—C1—S3—C30.7 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14···F1i0.932.603.476 (11)156

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2356).

References

  • Akutagawa, T. & Nakamura, T. (2000). Coord. Chem. Rev.198, 297–311.
  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cassoux, P. (1999). Coord. Chem. Rev.185–186, 213–232.
  • Egli, M. & Sarkhel, S. J. (2007). Acc. Chem. Res.40, 197–205. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Li, J., Yao, L., Su, Y. & Tao, R. (2006). Acta Cryst. E62, m1990–m1991.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, C., Batsanov, A. S., Bryce, M. R. & Howard, J. A. K. (1998). Synthesis, pp. 1615–1618.
  • Zang, S.-Q., Ren, X.-M., Su, Y., Song, Y., Tong, W.-J., Ni, Z.-P., Zhao, H.-H., Gao, S. & Meng, Q.-J. (2009). Inorg. Chem.48, 9623–9630. [PubMed]
  • Zang, S.-Q., Su, Y. & Tao, R.-J. (2006). Acta Cryst. E62, m1004–m1005.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography