PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1421.
Published online 2010 October 20. doi:  10.1107/S1600536810040560
PMCID: PMC3009302

(5-Amino­isophthalato-κN)triaqua­(1,10-phenanthroline-κ2 N,N′)cobalt(II) trihydrate

Abstract

The CoII atom in the title compound, [Co(C8H5NO4)(C12H8N2)(H2O)3]·3H2O, is six-coordinated in a CoN3O3 octa­hedral geometry; the water-coordinated CoII atom is chelated by the N-heterocycle. An inter­molecular N—H(...)O hydrogen bond occurs. The carboxyl­ate entity coordinates through the amino group. The carboxyl­ate donor unit, coordinated and uncoordinated water mol­ecules inter­act through O—H(...)O and N—H(...)O hydrogen bonds, generating a tightly-held three-dimensional cage-like network.

Related literature

For related structures, see: He et al. (2006 [triangle]); Wu et al. (2002a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1421-scheme1.jpg

Experimental

Crystal data

  • [Co(C8H5NO4)(C12H8N2)(H2O)3]·3H2O
  • M r = 526.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1421-efi1.jpg
  • a = 10.1182 (2) Å
  • b = 13.9659 (2) Å
  • c = 16.2850 (2) Å
  • β = 95.827 (1)°
  • V = 2289.34 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.81 mm−1
  • T = 293 K
  • 0.24 × 0.22 × 0.18 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.803, T max = 1.000
  • 18954 measured reflections
  • 5683 independent reflections
  • 5120 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.086
  • S = 1.04
  • 5683 reflections
  • 363 parameters
  • 14 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810040560/si2299sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040560/si2299Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, the National Natural Science Foundation of China (grant No. 20773107), Yangzhou University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The dianion of 5-aminoisophthalic acid binds to cobalt(II) in a bridging µ4-manner in the monoaqua derivative (Wu et al., 2002a), and the carboxyl oxygen as well as the amino nitrogen atoms are all involved in bonding in the three-dimensional network structure. A diaqua dihydrate has also been reported; the compound has the monoanion in µ2 bridging that gives rise to a chain motif (Wu et al., 2002b). The 4,4'-bipyridine spacer ligand lowers the dimensionality of cobalt 5-aminoisophthalate, and the diqua adduct, which crystallizes as a DMF solvate, exists as linear chains (He et al., 2006). The present 1,10-phenanthroline adduct is a triaqua trihydrate (Scheme I) in which the 5-aminosophthlate dianion binds only through the neutral amino donor site; the coordinated water molecules comprise the fac points of the octahedron around the metal atom (Fig. 1). The zwitterionic dianion, the coordinated and lattice water molecules interact through hydrogen bonds (Table 2) to furnish a tightly-held, three-dimensional network. Pairs of phenanthroline units show π···π interactions about a center-of-inversion at a distance of ca 3.5 Å (Fig. 2).

Experimental

Cobalt(II) nitrate hexahydrate (0.048 g, 0.165 mmol) dissolved in water (5 ml) was added to a mixture of 5-amino-isophthalic acid (0.030 g, 0.165 mmol) and sodium hydroxidie (0.013 g, 0.330 mmol) dissolved in water (5 ml). To this solution was added 1,10-phenanthroline (0.033 g, 0.165 mmol) dissolved in methanol (10 ml). The mixture was filtered and set aside for the growth of deep red crystals (35% yield based on the acid). CHN elemental analaysis. Calc. for C20H25CON3O10: C 45.63, H 4.79, N 7.98%. Found: C, 45.49; H, 4.89; N,7.91%.

Refinement

Hydrogen atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The amino and water bound H-atoms were located in difference Fourier maps, and were refined with a distance restraint of N–H = O–H = 0.85±0.01 Å. Their temperature factors were freely refined.

Figures

Fig. 1.
Thermal displacement ellipsoid plot of (I) at the 70% probability level; hydrogen atoms are shown as spheres of arbitrary radii.
Fig. 2.
Two formula units of (I) showing π···π interactions about a center-of-inversion.

Crystal data

[Co(C8H5NO4)(C12H8N2)(H2O)3]·3H2OF(000) = 1092
Mr = 526.36Dx = 1.527 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9790 reflections
a = 10.1182 (2) Åθ = 2.5–28.5°
b = 13.9659 (2) ŵ = 0.81 mm1
c = 16.2850 (2) ÅT = 293 K
β = 95.827 (1)°Prism, red
V = 2289.34 (8) Å30.24 × 0.22 × 0.18 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer5683 independent reflections
Radiation source: fine-focus sealed tube5120 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 28.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −13→13
Tmin = 0.803, Tmax = 1.000k = −18→18
18954 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0539P)2 + 0.5451P] where P = (Fo2 + 2Fc2)/3
5683 reflections(Δ/σ)max = 0.001
363 parametersΔρmax = 0.47 e Å3
14 restraintsΔρmin = −0.46 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.742889 (15)0.684399 (12)0.466367 (10)0.01480 (6)
O11.15673 (10)0.53092 (8)0.26398 (8)0.0313 (2)
O21.22644 (9)0.64316 (8)0.18340 (7)0.0283 (2)
O30.92170 (9)0.91482 (7)0.09694 (6)0.02231 (19)
O40.72213 (9)0.92307 (7)0.14075 (6)0.0237 (2)
O1W0.76586 (10)0.70374 (8)0.59335 (6)0.0228 (2)
H1W10.8296 (15)0.6766 (13)0.6202 (12)0.036 (6)*
H1W20.749 (2)0.7538 (11)0.6187 (13)0.052 (7)*
O2W0.79629 (9)0.54265 (7)0.49718 (6)0.01971 (18)
H2W10.7468 (16)0.5247 (15)0.5321 (10)0.037 (6)*
H2W20.784 (2)0.5056 (14)0.4555 (10)0.049 (6)*
O3W0.53714 (9)0.66780 (8)0.47286 (6)0.0235 (2)
H3W10.486 (2)0.6450 (17)0.4334 (11)0.057 (7)*
H3W20.509 (2)0.6474 (15)0.5168 (9)0.042 (6)*
O4W0.44314 (12)0.71848 (11)0.29095 (9)0.0424 (3)
H4W10.451 (2)0.7710 (11)0.2661 (14)0.056 (7)*
H4W20.390 (2)0.6844 (17)0.2600 (15)0.067 (9)*
O5W1.35918 (11)0.52866 (8)0.38701 (7)0.0276 (2)
H5W11.3070 (18)0.5252 (16)0.3431 (9)0.041 (6)*
H5W21.4231 (15)0.4911 (13)0.3801 (13)0.040 (6)*
O6W1.02652 (9)0.37775 (7)0.31095 (7)0.0248 (2)
H6W11.063 (2)0.4287 (10)0.2960 (13)0.044 (6)*
H6W20.9517 (13)0.3885 (15)0.3285 (13)0.045 (6)*
N10.70534 (10)0.63853 (8)0.33691 (6)0.0168 (2)
H1N10.6259 (11)0.6547 (13)0.3202 (11)0.023 (4)*
H1N20.7054 (19)0.5782 (7)0.3384 (12)0.031 (5)*
N20.71726 (11)0.83333 (8)0.43935 (7)0.0198 (2)
N30.94173 (10)0.73017 (8)0.45306 (7)0.0186 (2)
C10.79644 (12)0.67271 (9)0.28227 (7)0.0155 (2)
C20.91651 (12)0.62476 (9)0.27734 (7)0.0166 (2)
H20.93440.56880.30740.020*
C31.00960 (11)0.66020 (9)0.22771 (7)0.0160 (2)
C40.98255 (12)0.74438 (9)0.18275 (8)0.0170 (2)
H41.04460.76860.14980.020*
C50.86219 (11)0.79214 (9)0.18732 (7)0.0158 (2)
C60.76966 (12)0.75642 (9)0.23778 (7)0.0168 (2)
H60.69020.78880.24150.020*
C71.14016 (11)0.60753 (9)0.22423 (8)0.0180 (2)
C80.83353 (12)0.88295 (9)0.13858 (7)0.0164 (2)
C90.60574 (14)0.88414 (11)0.43592 (9)0.0264 (3)
H90.52780.85340.44660.032*
C100.60072 (16)0.98217 (12)0.41679 (10)0.0316 (3)
H100.52101.01560.41570.038*
C110.71446 (17)1.02817 (11)0.39974 (9)0.0307 (3)
H110.71271.09320.38750.037*
C120.83406 (15)0.97630 (10)0.40083 (9)0.0259 (3)
C130.83020 (13)0.87881 (10)0.42259 (8)0.0195 (2)
C140.95735 (17)1.01683 (12)0.38069 (11)0.0365 (4)
H140.96021.08100.36570.044*
C151.06906 (17)0.96363 (13)0.38306 (12)0.0379 (4)
H151.14690.99120.36820.045*
C161.06940 (14)0.86486 (12)0.40818 (10)0.0280 (3)
C170.95058 (13)0.82265 (10)0.42820 (8)0.0198 (2)
C181.18338 (15)0.80580 (13)0.41512 (11)0.0353 (4)
H181.26400.82970.40130.042*
C191.17504 (14)0.71351 (13)0.44210 (11)0.0326 (3)
H191.25030.67490.44820.039*
C201.05169 (13)0.67760 (10)0.46052 (9)0.0245 (3)
H201.04690.61470.47860.029*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.01501 (9)0.01376 (10)0.01610 (10)0.00058 (5)0.00396 (6)0.00020 (6)
O10.0198 (4)0.0260 (5)0.0490 (7)0.0059 (4)0.0081 (4)0.0196 (5)
O20.0216 (4)0.0249 (5)0.0407 (6)0.0061 (4)0.0137 (4)0.0139 (5)
O30.0215 (4)0.0204 (5)0.0265 (5)0.0018 (4)0.0095 (3)0.0082 (4)
O40.0216 (4)0.0192 (5)0.0320 (5)0.0066 (4)0.0109 (4)0.0087 (4)
O1W0.0260 (5)0.0237 (5)0.0185 (4)0.0059 (4)0.0009 (4)−0.0061 (4)
O2W0.0266 (4)0.0146 (4)0.0182 (4)−0.0006 (4)0.0031 (3)−0.0010 (4)
O3W0.0170 (4)0.0344 (5)0.0198 (5)−0.0033 (4)0.0045 (3)−0.0009 (4)
O4W0.0265 (5)0.0461 (8)0.0526 (8)−0.0063 (5)−0.0051 (5)0.0224 (7)
O5W0.0306 (5)0.0256 (5)0.0269 (5)0.0060 (4)0.0045 (4)0.0030 (4)
O6W0.0206 (4)0.0192 (5)0.0354 (5)0.0003 (4)0.0073 (4)0.0018 (4)
N10.0181 (4)0.0166 (5)0.0165 (5)−0.0001 (4)0.0058 (4)0.0032 (4)
N20.0202 (5)0.0180 (5)0.0214 (5)0.0022 (4)0.0036 (4)0.0007 (4)
N30.0171 (5)0.0184 (5)0.0205 (5)−0.0001 (4)0.0025 (4)−0.0015 (4)
C10.0175 (5)0.0165 (5)0.0132 (5)−0.0008 (4)0.0041 (4)0.0009 (4)
C20.0192 (5)0.0147 (5)0.0161 (5)0.0009 (4)0.0024 (4)0.0027 (4)
C30.0157 (5)0.0152 (5)0.0172 (5)0.0011 (4)0.0022 (4)0.0005 (4)
C40.0171 (5)0.0167 (6)0.0180 (5)0.0000 (4)0.0051 (4)0.0024 (5)
C50.0175 (5)0.0139 (5)0.0166 (5)0.0008 (4)0.0041 (4)0.0022 (4)
C60.0168 (5)0.0172 (6)0.0171 (5)0.0020 (4)0.0051 (4)0.0006 (5)
C70.0152 (5)0.0166 (6)0.0222 (6)0.0011 (4)0.0020 (4)0.0028 (5)
C80.0194 (5)0.0136 (5)0.0164 (5)0.0008 (4)0.0035 (4)0.0018 (4)
C90.0251 (6)0.0243 (7)0.0308 (7)0.0063 (5)0.0066 (5)0.0030 (6)
C100.0378 (8)0.0258 (7)0.0313 (7)0.0149 (6)0.0044 (6)0.0046 (6)
C110.0465 (8)0.0180 (6)0.0267 (7)0.0059 (6)−0.0005 (6)0.0034 (6)
C120.0349 (7)0.0185 (6)0.0236 (6)−0.0026 (5)−0.0004 (5)0.0037 (5)
C130.0234 (6)0.0172 (6)0.0178 (5)−0.0011 (5)0.0019 (4)0.0006 (5)
C140.0441 (9)0.0232 (7)0.0416 (9)−0.0111 (6)0.0012 (7)0.0102 (7)
C150.0344 (8)0.0343 (9)0.0454 (9)−0.0156 (7)0.0063 (7)0.0089 (7)
C160.0239 (6)0.0296 (7)0.0309 (7)−0.0085 (6)0.0050 (5)0.0024 (6)
C170.0196 (6)0.0199 (6)0.0201 (6)−0.0025 (5)0.0026 (4)−0.0012 (5)
C180.0186 (6)0.0439 (10)0.0441 (9)−0.0075 (6)0.0068 (6)−0.0006 (7)
C190.0166 (6)0.0376 (8)0.0436 (9)0.0031 (6)0.0034 (6)−0.0033 (7)
C200.0202 (6)0.0229 (7)0.0302 (7)0.0027 (5)0.0011 (5)−0.0025 (5)

Geometric parameters (Å, °)

Co1—O1W2.0750 (10)C1—C21.3967 (16)
Co1—O2W2.0995 (9)C2—C31.3927 (16)
Co1—O3W2.1080 (9)C2—H20.9300
Co1—N22.1364 (12)C3—C41.3974 (17)
Co1—N32.1429 (10)C3—C71.5181 (16)
Co1—N12.1992 (11)C4—C51.3971 (16)
O1—C71.2530 (16)C4—H40.9300
O2—C71.2530 (15)C5—C61.3989 (16)
O3—C81.2556 (14)C5—C81.5086 (17)
O4—C81.2624 (15)C6—H60.9300
O1W—H1W10.83 (1)C9—C101.404 (2)
O1W—H1W20.84 (1)C9—H90.9300
O2W—H2W10.83 (1)C10—C111.371 (2)
O2W—H2W20.85 (1)C10—H100.9300
O3W—H3W10.84 (1)C11—C121.409 (2)
O3W—H3W20.85 (1)C11—H110.9300
O4W—H4W10.85 (1)C12—C131.4085 (19)
O4W—H4W20.85 (1)C12—C141.438 (2)
O5W—H5W10.85 (1)C13—C171.4437 (18)
O5W—H5W20.85 (1)C14—C151.350 (3)
O6W—H6W10.85 (1)C14—H140.9300
O6W—H6W20.85 (1)C15—C161.439 (2)
N1—C11.4269 (15)C15—H150.9300
N1—H1N10.85 (1)C16—C171.4066 (18)
N1—H1N20.84 (1)C16—C181.413 (2)
N2—C91.3293 (17)C18—C191.367 (2)
N2—C131.3590 (17)C18—H180.9300
N3—C201.3282 (17)C19—C201.405 (2)
N3—C171.3593 (17)C19—H190.9300
C1—C61.3876 (17)C20—H200.9300
O1W—Co1—O2W83.37 (4)C3—C4—H4120.0
O1W—Co1—O3W88.60 (4)C4—C5—C6120.00 (11)
O2W—Co1—O3W96.65 (4)C4—C5—C8119.70 (10)
O1W—Co1—N294.45 (4)C6—C5—C8120.29 (11)
O2W—Co1—N2171.97 (4)C1—C6—C5120.02 (11)
O3W—Co1—N291.01 (4)C1—C6—H6120.0
O1W—Co1—N392.90 (4)C5—C6—H6120.0
O2W—Co1—N394.82 (4)O2—C7—O1123.33 (11)
O3W—Co1—N3168.53 (4)O2—C7—C3118.90 (11)
N2—Co1—N377.54 (4)O1—C7—C3117.76 (11)
O1W—Co1—N1169.81 (4)O3—C8—O4122.90 (11)
O2W—Co1—N188.26 (4)O3—C8—C5118.22 (11)
O3W—Co1—N186.60 (4)O4—C8—C5118.88 (10)
N2—Co1—N194.62 (4)N2—C9—C10122.77 (14)
N3—Co1—N193.59 (4)N2—C9—H9118.6
Co1—O1W—H1W1117.8 (15)C10—C9—H9118.6
Co1—O1W—H1W2126.2 (16)C11—C10—C9119.33 (14)
H1W1—O1W—H1W2108 (2)C11—C10—H10120.3
Co1—O2W—H2W1106.8 (15)C9—C10—H10120.3
Co1—O2W—H2W2111.5 (16)C10—C11—C12119.61 (14)
H2W1—O2W—H2W2108 (2)C10—C11—H11120.2
Co1—O3W—H3W1122.1 (17)C12—C11—H11120.2
Co1—O3W—H3W2120.1 (15)C13—C12—C11117.03 (13)
H3W1—O3W—H3W2106 (2)C13—C12—C14119.00 (14)
H4W1—O4W—H4W2107 (2)C11—C12—C14123.96 (14)
H5W1—O5W—H5W2106 (2)N2—C13—C12123.20 (12)
H6W1—O6W—H6W2112 (2)N2—C13—C17117.04 (12)
C1—N1—Co1116.15 (8)C12—C13—C17119.75 (12)
C1—N1—H1N1111.1 (12)C15—C14—C12121.35 (14)
Co1—N1—H1N1107.1 (12)C15—C14—H14119.3
C1—N1—H1N2110.7 (13)C12—C14—H14119.3
Co1—N1—H1N2105.3 (13)C14—C15—C16120.90 (14)
H1N1—N1—H1N2105.8 (18)C14—C15—H15119.5
C9—N2—C13118.01 (12)C16—C15—H15119.5
C9—N2—Co1127.81 (10)C17—C16—C18116.54 (14)
C13—N2—Co1114.17 (9)C17—C16—C15119.36 (14)
C20—N3—C17118.20 (11)C18—C16—C15124.11 (14)
C20—N3—Co1127.75 (10)N3—C17—C16123.43 (13)
C17—N3—Co1113.86 (8)N3—C17—C13117.02 (11)
C6—C1—C2119.92 (11)C16—C17—C13119.55 (13)
C6—C1—N1120.22 (11)C19—C18—C16119.97 (14)
C2—C1—N1119.75 (11)C19—C18—H18120.0
C3—C2—C1120.43 (11)C16—C18—H18120.0
C3—C2—H2119.8C18—C19—C20119.35 (14)
C1—C2—H2119.8C18—C19—H19120.3
C2—C3—C4119.67 (11)C20—C19—H19120.3
C2—C3—C7119.46 (11)N3—C20—C19122.48 (14)
C4—C3—C7120.86 (11)N3—C20—H20118.8
C5—C4—C3119.95 (11)C19—C20—H20118.8
C5—C4—H4120.0
O1W—Co1—N1—C1−145.0 (2)C4—C5—C8—O3−2.25 (18)
O2W—Co1—N1—C1−110.28 (9)C6—C5—C8—O3176.88 (12)
O3W—Co1—N1—C1152.95 (9)C4—C5—C8—O4177.14 (12)
N2—Co1—N1—C162.21 (9)C6—C5—C8—O4−3.73 (18)
N3—Co1—N1—C1−15.56 (9)C13—N2—C9—C10−0.8 (2)
O1W—Co1—N2—C9−85.16 (12)Co1—N2—C9—C10−179.49 (11)
O3W—Co1—N2—C93.51 (12)N2—C9—C10—C110.9 (2)
N3—Co1—N2—C9−177.16 (13)C9—C10—C11—C120.7 (2)
N1—Co1—N2—C990.18 (12)C10—C11—C12—C13−2.1 (2)
O1W—Co1—N2—C1396.06 (9)C10—C11—C12—C14177.43 (16)
O3W—Co1—N2—C13−175.26 (9)C9—N2—C13—C12−0.9 (2)
N3—Co1—N2—C134.07 (9)Co1—N2—C13—C12178.02 (10)
N1—Co1—N2—C13−88.59 (9)C9—N2—C13—C17178.87 (12)
O1W—Co1—N3—C2085.77 (12)Co1—N2—C13—C17−2.23 (15)
O2W—Co1—N3—C202.19 (12)C11—C12—C13—N22.3 (2)
O3W—Co1—N3—C20−176.94 (17)C14—C12—C13—N2−177.27 (14)
N2—Co1—N3—C20179.69 (12)C11—C12—C13—C17−177.44 (13)
N1—Co1—N3—C20−86.36 (12)C14—C12—C13—C173.0 (2)
O1W—Co1—N3—C17−99.37 (9)C13—C12—C14—C15−0.7 (2)
O2W—Co1—N3—C17177.06 (9)C11—C12—C14—C15179.79 (16)
O3W—Co1—N3—C17−2.1 (3)C12—C14—C15—C16−1.8 (3)
N2—Co1—N3—C17−5.45 (9)C14—C15—C16—C171.9 (3)
N1—Co1—N3—C1788.50 (9)C14—C15—C16—C18−177.55 (17)
Co1—N1—C1—C6−92.87 (12)C20—N3—C17—C161.5 (2)
Co1—N1—C1—C283.33 (13)Co1—N3—C17—C16−173.89 (11)
C6—C1—C2—C3−0.27 (19)C20—N3—C17—C13−178.51 (12)
N1—C1—C2—C3−176.48 (11)Co1—N3—C17—C136.10 (15)
C1—C2—C3—C40.13 (19)C18—C16—C17—N3−0.1 (2)
C1—C2—C3—C7179.20 (11)C15—C16—C17—N3−179.52 (14)
C2—C3—C4—C5−0.45 (19)C18—C16—C17—C13179.94 (14)
C7—C3—C4—C5−179.51 (11)C15—C16—C17—C130.5 (2)
C3—C4—C5—C60.91 (19)N2—C13—C17—N3−2.64 (18)
C3—C4—C5—C8−179.95 (11)C12—C13—C17—N3177.12 (12)
C2—C1—C6—C50.73 (19)N2—C13—C17—C16177.35 (12)
N1—C1—C6—C5176.92 (11)C12—C13—C17—C16−2.9 (2)
C4—C5—C6—C1−1.06 (19)C17—C16—C18—C19−1.6 (2)
C8—C5—C6—C1179.81 (11)C15—C16—C18—C19177.86 (17)
C2—C3—C7—O2−175.69 (12)C16—C18—C19—C201.7 (3)
C4—C3—C7—O23.38 (19)C17—N3—C20—C19−1.3 (2)
C2—C3—C7—O13.05 (18)Co1—N3—C20—C19173.33 (11)
C4—C3—C7—O1−177.88 (13)C18—C19—C20—N3−0.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O6wi0.83 (1)1.90 (1)2.734 (1)175 (2)
O1w—H1w2···O2ii0.84 (1)1.81 (1)2.646 (1)173 (2)
O2w—H2w1···O5wi0.83 (1)1.93 (1)2.761 (1)174 (2)
O2w—H2w2···O4iii0.85 (1)1.94 (1)2.790 (1)173 (2)
O3w—H3w1···O5wiv0.84 (1)2.16 (2)2.909 (2)148 (2)
O3w—H3w2···O3ii0.85 (1)1.86 (1)2.694 (1)167 (2)
O4w—H4w1···O6wv0.85 (1)1.98 (1)2.811 (2)169 (2)
O4w—H4w2···O2iv0.85 (1)2.05 (1)2.864 (2)161 (3)
O5w—H5w1···O10.85 (1)1.89 (1)2.716 (2)164 (2)
O5w—H5w2···O3vi0.85 (1)1.90 (1)2.719 (1)161 (2)
O6w—H6w1···O10.85 (1)1.82 (1)2.665 (1)174 (2)
O6w—H6w2···O4iii0.85 (1)1.94 (1)2.784 (1)174 (2)
N1—H1N1···O4w0.85 (1)2.06 (1)2.906 (2)169 (2)
N1—H1N2···O4iii0.84 (1)2.30 (1)3.110 (2)161 (2)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x−1/2, −y+3/2, z+1/2; (iii) −x+3/2, y−1/2, −z+1/2; (iv) x−1, y, z; (v) −x+3/2, y+1/2, −z+1/2; (vi) −x+5/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2299).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Winsonsin, USA.
  • He, H.-Y., Zhou, Y.-L. & Zhu, L.-G. (2006). Chin. J. Inorg. Chem.22, 142–144.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  • Wu, C.-D., Liu, C.-Z., Yang, W.-B., Zhuang, H.-H. & Huang, J.-S. (2002a). Inorg. Chem.41, 3302–3307. [PubMed]
  • Wu, C. D., Liu, C.-Z., Zhuang, H.-H. & Huang, J.-S. (2002b). Z. Anorg. Allg. Chem.628, 1935–1937.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography