PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2976.
Published online 2010 October 30. doi:  10.1107/S1600536810042984
PMCID: PMC3009290

N-(2-Meth­oxy­phen­yl)-4-methyl­benzene­sulfonamide

Abstract

In the title compound, C14H15NO3S, the geometry around the S atom of the SO2 group is distorted tetra­hedral. The meth­oxy- and methyl-substituted aromatic rings are oriented at a dihedral angle of 71.39 (9)°. Inter­molecular N—H(...)O hydrogen bonds form inversion dimers, which stabilize the crystal structure.

Related literature

For the anti­microbial activity of sulfonamide compounds, see: Gao & Pederson (2005 [triangle]). For a related thia­zine mol­ecule, see: Arshad et al. (2010 [triangle]). For a related structure, see: Aziz-ur-Rehman et al. (2010 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2976-scheme1.jpg

Experimental

Crystal data

  • C14H15NO3S
  • M r = 277.33
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2976-efi1.jpg
  • a = 12.7395 (9) Å
  • b = 11.4906 (6) Å
  • c = 18.6968 (10) Å
  • V = 2736.9 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 296 K
  • 0.42 × 0.33 × 0.21 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.906, T max = 0.951
  • 13798 measured reflections
  • 3376 independent reflections
  • 1313 reflections with I > 2σ(I)
  • R int = 0.086

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.143
  • S = 0.91
  • 3376 reflections
  • 174 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810042984/sj5047sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042984/sj5047Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission of Pakistan for providing grant for the project to strengthen the Materials Chemistry Laboratory at GC University Lahore, Pakistan.

supplementary crystallographic information

Comment

Sulfonamide compounds are well known as antimicrobial agents (Gao & Pederson, 2005). The structure reported here is a precursor used in the synthesis of thiazine heterocycles (Arshad et al., 2010).

The bond lengths and angles in the title compound are similar to those observed in the recently published N-(2-methoxyphenyl)benzenesulfonamide (II) (Aziz-ur-Rehman et al., 2010). The two aromatic rings (C1/C2/C3/C4/C5/C6) and C7/C8/C9/C10/C11/C12) are oriented at dihedral angles of 71.39 (0.09)° unlike the dihedral angles observed for the two independent molecules in II. Similarly the torsion angle C—S—N(H)—C is -56.5 (3) compared with 67.25 (15)° in molecule A and -81.17 (16)° in molecule B of (II). Inversion related intermolecular N—H···O hydrogen bonds form dimers and generate an eight-membered R22(8) ring motif (Bernstein et al., 1995) Table. 1, Fig. 2.

Experimental

A mixture of para toluenesulfonyl chloride (0.00104 mol; 0.200 g), o-anisidine (0.00104 mol; 0.128 g), was stirred in 10–15 ml of distilled water, while maintaining pH of the reaction mixture at 8–10 using 3% sodium carbonate. The progress of the reaction was checked by TLC. On completion of reaction the precipitates obtained were filtered, washed with water and finally dried. Suitable crystals for X-Ray analysis were grown from DCM (dichloromethane) by slow evaporation.

Refinement

All the C—H and H-atoms were positioned with idealized geometry with C—H = 0.93 Å for aromatic C—H = 0.96 Å and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) for aromatic, with Uiso(H) = 1.5 Ueq(C) for methyl. The N–H H atom was fixed in its found position with Uiso(H) = 1.2 Ueq(N).

Figures

Fig. 1.
The molecular structure of (I) showing 50% displacement ellipsoids.
Fig. 2.
Inversion dimers formed through N—H···O hydrogen bonds drawn as dashed lines.

Crystal data

C14H15NO3SF(000) = 1168
Mr = 277.33Dx = 1.346 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1013 reflections
a = 12.7395 (9) Åθ = 3.2–19.2°
b = 11.4906 (6) ŵ = 0.24 mm1
c = 18.6968 (10) ÅT = 296 K
V = 2736.9 (3) Å3Needle, light brown
Z = 80.42 × 0.33 × 0.21 mm

Data collection

Bruker Kappa APEXII CCD diffractometer3376 independent reflections
Radiation source: fine-focus sealed tube1313 reflections with I > 2σ(I)
graphiteRint = 0.086
[var phi] and ω scansθmax = 28.3°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −16→10
Tmin = 0.906, Tmax = 0.951k = −11→15
13798 measured reflectionsl = −24→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 0.91w = 1/[σ2(Fo2) + (0.0552P)2] where P = (Fo2 + 2Fc2)/3
3376 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.51740 (7)0.61649 (6)0.39096 (4)0.0571 (3)
O10.60405 (18)0.61039 (18)0.34278 (11)0.0706 (7)
N10.55946 (19)0.6656 (2)0.46723 (12)0.0529 (7)
C10.4303 (2)0.7199 (2)0.35541 (14)0.0465 (7)
O20.46120 (19)0.51265 (17)0.40827 (11)0.0751 (7)
C20.4619 (3)0.7899 (3)0.30004 (16)0.0584 (8)
H20.52980.78420.28220.070*
O30.49484 (18)0.80720 (18)0.56921 (11)0.0662 (6)
C30.3924 (3)0.8688 (3)0.27103 (16)0.0607 (9)
H30.41460.91620.23370.073*
C40.2908 (3)0.8796 (2)0.29578 (15)0.0510 (8)
C50.2613 (3)0.8091 (3)0.35213 (17)0.0598 (9)
H50.19350.81500.37030.072*
H1N0.53060.62700.49990.072*
C60.3298 (3)0.7303 (3)0.38188 (16)0.0610 (9)
H60.30820.68390.41990.073*
C70.6101 (2)0.7748 (2)0.47481 (15)0.0481 (8)
C80.5756 (2)0.8488 (2)0.52917 (16)0.0491 (8)
C90.6239 (3)0.9550 (3)0.53963 (18)0.0650 (9)
H90.60061.00470.57550.078*
C100.7065 (3)0.9868 (3)0.4967 (2)0.0742 (11)
H100.73911.05830.50380.089*
C110.7412 (3)0.9152 (3)0.4440 (2)0.0766 (11)
H110.79690.93800.41510.092*
C120.6934 (3)0.8076 (3)0.43331 (16)0.0629 (9)
H120.71820.75790.39790.075*
C130.2160 (3)0.9656 (3)0.26372 (17)0.0697 (10)
H13A0.21370.95520.21280.105*
H13B0.23911.04320.27450.105*
H13C0.14720.95360.28330.105*
C140.4637 (3)0.8720 (3)0.63051 (18)0.0889 (12)
H14A0.43960.94760.61590.133*
H14B0.52240.88040.66230.133*
H14C0.40790.83180.65470.133*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0728 (6)0.0410 (5)0.0575 (5)0.0023 (4)−0.0082 (5)−0.0047 (4)
O10.0764 (17)0.0696 (16)0.0659 (14)0.0201 (12)0.0028 (13)−0.0123 (12)
N10.0685 (19)0.0410 (14)0.0491 (14)−0.0108 (13)−0.0068 (13)0.0069 (12)
C10.057 (2)0.0393 (17)0.0436 (16)−0.0066 (15)0.0000 (15)−0.0013 (14)
O20.104 (2)0.0370 (12)0.0845 (16)−0.0171 (12)−0.0261 (14)0.0047 (11)
C20.051 (2)0.064 (2)0.0603 (19)0.0033 (17)0.0091 (17)0.0070 (17)
O30.0647 (17)0.0638 (14)0.0700 (14)−0.0036 (12)0.0084 (12)−0.0086 (12)
C30.067 (2)0.064 (2)0.0515 (19)0.0029 (19)0.0090 (18)0.0179 (17)
C40.056 (2)0.0500 (19)0.0469 (18)0.0010 (16)−0.0005 (16)−0.0061 (16)
C50.051 (2)0.063 (2)0.065 (2)−0.0016 (17)0.0114 (17)0.0007 (18)
C60.070 (3)0.057 (2)0.0552 (19)−0.0038 (18)0.0124 (19)0.0129 (17)
C70.052 (2)0.0433 (18)0.0492 (18)−0.0005 (16)−0.0084 (16)0.0078 (15)
C80.047 (2)0.046 (2)0.0543 (18)−0.0001 (16)−0.0065 (16)0.0053 (15)
C90.078 (3)0.050 (2)0.066 (2)−0.007 (2)−0.014 (2)−0.0039 (18)
C100.084 (3)0.060 (2)0.079 (2)−0.024 (2)−0.022 (2)0.010 (2)
C110.072 (3)0.086 (3)0.072 (3)−0.028 (2)−0.007 (2)0.020 (2)
C120.065 (2)0.069 (2)0.055 (2)−0.0093 (19)−0.0024 (18)0.0010 (18)
C130.068 (3)0.075 (2)0.066 (2)0.015 (2)0.0018 (19)0.0041 (18)
C140.098 (3)0.100 (3)0.069 (2)0.005 (2)0.012 (2)−0.011 (2)

Geometric parameters (Å, °)

S1—O11.426 (2)C6—H60.9300
S1—O21.429 (2)C7—C121.368 (4)
S1—N11.625 (2)C7—C81.396 (4)
S1—C11.756 (3)C8—C91.381 (4)
N1—C71.418 (3)C9—C101.373 (5)
N1—H1N0.8394C9—H90.9300
C1—C21.371 (4)C10—C111.357 (5)
C1—C61.378 (4)C10—H100.9300
C2—C31.378 (4)C11—C121.393 (4)
C2—H20.9300C11—H110.9300
O3—C81.359 (3)C12—H120.9300
O3—C141.424 (3)C13—H13A0.9600
C3—C41.379 (4)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.382 (4)C14—H14A0.9600
C4—C131.498 (4)C14—H14B0.9600
C5—C61.375 (4)C14—H14C0.9600
C5—H50.9300
O1—S1—O2119.32 (14)C12—C7—N1122.7 (3)
O1—S1—N1108.43 (13)C8—C7—N1117.9 (3)
O2—S1—N1104.86 (12)O3—C8—C9124.8 (3)
O1—S1—C1106.45 (14)O3—C8—C7115.1 (3)
O2—S1—C1109.52 (15)C9—C8—C7120.1 (3)
N1—S1—C1107.79 (13)C10—C9—C8119.6 (3)
C7—N1—S1123.03 (19)C10—C9—H9120.2
C7—N1—H1N126.5C8—C9—H9120.2
S1—N1—H1N108.1C11—C10—C9120.9 (3)
C2—C1—C6119.5 (3)C11—C10—H10119.6
C2—C1—S1119.8 (3)C9—C10—H10119.6
C6—C1—S1120.6 (2)C10—C11—C12120.0 (4)
C1—C2—C3119.7 (3)C10—C11—H11120.0
C1—C2—H2120.2C12—C11—H11120.0
C3—C2—H2120.2C7—C12—C11120.1 (3)
C8—O3—C14118.1 (3)C7—C12—H12119.9
C2—C3—C4122.0 (3)C11—C12—H12119.9
C2—C3—H3119.0C4—C13—H13A109.5
C4—C3—H3119.0C4—C13—H13B109.5
C3—C4—C5117.3 (3)H13A—C13—H13B109.5
C3—C4—C13121.4 (3)C4—C13—H13C109.5
C5—C4—C13121.2 (3)H13A—C13—H13C109.5
C6—C5—C4121.4 (3)H13B—C13—H13C109.5
C6—C5—H5119.3O3—C14—H14A109.5
C4—C5—H5119.3O3—C14—H14B109.5
C5—C6—C1120.1 (3)H14A—C14—H14B109.5
C5—C6—H6120.0O3—C14—H14C109.5
C1—C6—H6120.0H14A—C14—H14C109.5
C12—C7—C8119.3 (3)H14B—C14—H14C109.5
O1—S1—N1—C758.3 (3)C2—C1—C6—C51.0 (5)
O2—S1—N1—C7−173.2 (2)S1—C1—C6—C5−178.0 (2)
C1—S1—N1—C7−56.5 (3)S1—N1—C7—C12−51.4 (4)
O1—S1—C1—C2−11.4 (3)S1—N1—C7—C8131.6 (2)
O2—S1—C1—C2−141.7 (2)C14—O3—C8—C9−6.2 (4)
N1—S1—C1—C2104.7 (2)C14—O3—C8—C7173.0 (3)
O1—S1—C1—C6167.6 (2)C12—C7—C8—O3−177.7 (3)
O2—S1—C1—C637.3 (3)N1—C7—C8—O3−0.6 (4)
N1—S1—C1—C6−76.3 (3)C12—C7—C8—C91.5 (4)
C6—C1—C2—C3−0.7 (4)N1—C7—C8—C9178.6 (3)
S1—C1—C2—C3178.3 (2)O3—C8—C9—C10178.5 (3)
C1—C2—C3—C4−0.3 (5)C7—C8—C9—C10−0.6 (5)
C2—C3—C4—C51.0 (5)C8—C9—C10—C110.1 (5)
C2—C3—C4—C13−179.9 (3)C9—C10—C11—C12−0.5 (6)
C3—C4—C5—C6−0.7 (5)C8—C7—C12—C11−1.8 (5)
C13—C4—C5—C6−179.8 (3)N1—C7—C12—C11−178.9 (3)
C4—C5—C6—C1−0.3 (5)C10—C11—C12—C71.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.842.353.112 (3)151

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5047).

References

  • Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2010). Acta Cryst. E66, o1070. [PMC free article] [PubMed]
  • Aziz-ur-Rehman, Sajjad, M. A., Akkurt, M., Sharif, S., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o1769. [PMC free article] [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2007). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gao, J. & Pederson, J. A. (2005). Environ. Sci. Technol 39, 9509–9516. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography