PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2830.
Published online 2010 October 20. doi:  10.1107/S1600536810040638
PMCID: PMC3009285

10-(Prop-2-yn­yl)-10H-phenothia­zine

Abstract

In the mol­ecule of the title compound, C15H11NS, the butterfly angle between the two planes defined by the two wings of the phenothia­zine unit is 33.5 (8)°. The dihedral angles between the two benzene rings and the propynyl group are 85 (4) and 63 (4)°.

Related literature

For the 1,3-dipolar addition reaction in chemical synthesis, see: Kumar et al. (2006 [triangle]); Kalita et al. (2006 [triangle]); Sibi et al. (2006 [triangle]); Choi et al. (2006 [triangle]); Ji-Cai et al. (2007 [triangle]); Aouine et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2830-scheme1.jpg

Experimental

Crystal data

  • C15H11NS
  • M r = 237.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2830-efi1.jpg
  • a = 10.5306 (10) Å
  • b = 7.2981 (6) Å
  • c = 15.6782 (14) Å
  • β = 96.023 (3)°
  • V = 1198.27 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 296 K
  • 0.42 × 0.38 × 0.17 mm

Data collection

  • Bruker APEXII CCD detector diffractometer
  • 16905 measured reflections
  • 3688 independent reflections
  • 2683 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.151
  • S = 1.08
  • 3688 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810040638/ds2063sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040638/ds2063Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the CNRST, Morocco, for making this work possible.

supplementary crystallographic information

Comment

The 1,3-dipolar addition reaction as a versatile method for preparing five-membered heterocyclic compounds is a classical reaction in organic chemistry and has been studied extensively. These cycloadditions have been utilized for the preparation of compounds that are fundamental importance in diverse fields of chemistry, see: Kumar et al. (2006); Kalita et al. (2006); Sibi et al. (2006); Choi et al. (2006); Ji-Cai et al. (2007). This approach consists of preparing firstly, heterocyclic dipolarophiles by nucleophilic substitution of propargyl bromide with heterocyclic compounds, see: Y. Aouine et al. (2008). The dipolarophile 10-(prop-2-ynyl)-10H-phenothiazine was obtained with good yield.

In the molecule of the title compound, C15H11NS, the butterfly angle between the two planes defined by the two wings of the phenothiazine unit is 33.5 (8)°. The dihedral angles between the two phenyls and the propynyl are: 85 (4)° and 63 (4)°, respictively.

Experimental

To a stirred solution (10 mmoles) of phenothiazine, potassium carbonate (15 mmoles) and a catalytic amount of tetrabutylammonium bromide in 10 ml of dry acetone, 10 mmoles of propargyl bromide was added. The mixture was stirred at room temperature for 6 h. The solvent was evaporated under vacuum and the residue was extracted with ether. The organic layer was washed with water, dried with sodium sulfate (Na2SO4), and the solvent was removed. The product was purified by column chromatography on silica gel using ether/hexane as eluant to afford pure alkyne. The purity of the compound was checked by determining its melting point (82–84°C). Suitable single-crystal of the title compound was obtained by recrystallization from ethanol. The structure of the product was established on the basis of NMR spectroscopy (1H, 13 C) and MS data.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.97 Å (methyne) and 0.93Å (aromatic) with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
ORTEP of the molecule of the title compound showing the atom-labelling scheme and 50% probability displacement ellipsoids.
Fig. 2.
Partial packing view.

Crystal data

C15H11NSF(000) = 496
Mr = 237.31Dx = 1.315 Mg m3
Monoclinic, P21/nMelting point: 355 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.5306 (10) ÅCell parameters from 2646 reflections
b = 7.2981 (6) Åθ = 1.7–26.2°
c = 15.6782 (14) ŵ = 0.24 mm1
β = 96.023 (3)°T = 296 K
V = 1198.27 (18) Å3Block, colourless
Z = 40.42 × 0.38 × 0.17 mm

Data collection

Bruker APEXII CCD detector diffractometer2683 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
graphiteθmax = 30.6°, θmin = 2.2°
ω and [var phi] scansh = −15→15
16905 measured reflectionsk = −10→10
3688 independent reflectionsl = −21→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.151w = 1/[σ2(Fo2) + (0.0829P)2 + 0.0989P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
3688 reflectionsΔρmax = 0.35 e Å3
155 parametersΔρmin = −0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.74384 (5)1.23619 (6)1.08918 (3)0.06194 (18)
C10.64205 (14)1.18256 (18)0.99624 (9)0.0453 (3)
C120.81567 (13)1.0206 (2)1.10752 (9)0.0476 (3)
C60.68419 (12)1.06413 (17)0.93508 (8)0.0409 (3)
C70.84191 (12)0.9120 (2)1.03762 (8)0.0444 (3)
C50.60793 (14)1.0439 (2)0.85724 (9)0.0482 (3)
H50.63380.96610.81540.058*
C40.49414 (14)1.1390 (2)0.84205 (11)0.0572 (4)
H40.44641.12860.78890.069*
C30.45030 (16)1.2484 (2)0.90383 (12)0.0594 (4)
H30.37241.30870.89350.071*
C140.78307 (14)0.6913 (2)0.86512 (9)0.0512 (3)
C20.52371 (17)1.26762 (19)0.98158 (11)0.0545 (4)
H20.49371.33821.02460.065*
C130.84863 (13)0.8676 (2)0.88310 (9)0.0504 (3)
H13A0.93910.84450.89700.060*
H13B0.83860.94190.83150.060*
C80.90857 (15)0.7493 (2)1.05489 (11)0.0582 (4)
H80.92660.67401.00990.070*
C100.91968 (17)0.8038 (3)1.20672 (11)0.0690 (5)
H100.94570.76761.26270.083*
C110.85181 (15)0.9640 (3)1.19087 (10)0.0585 (4)
H110.83011.03461.23650.070*
C150.72916 (18)0.5503 (3)0.85403 (11)0.0663 (4)
H150.68660.43910.84530.080*
C90.94833 (17)0.6984 (3)1.13868 (12)0.0707 (5)
H90.99520.59121.14900.085*
N10.80200 (10)0.97117 (16)0.95310 (7)0.0436 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0868 (3)0.0449 (2)0.0533 (3)−0.00690 (19)0.0031 (2)−0.01417 (16)
C10.0585 (8)0.0314 (6)0.0470 (7)−0.0052 (5)0.0096 (6)0.0007 (5)
C120.0450 (6)0.0521 (8)0.0449 (7)−0.0122 (6)0.0006 (5)−0.0051 (6)
C60.0473 (6)0.0334 (6)0.0426 (6)−0.0073 (5)0.0075 (5)0.0020 (5)
C70.0374 (6)0.0507 (8)0.0447 (7)−0.0080 (5)0.0033 (5)−0.0021 (6)
C50.0555 (8)0.0423 (7)0.0463 (7)−0.0043 (6)0.0027 (6)0.0008 (6)
C40.0575 (8)0.0522 (9)0.0595 (9)−0.0032 (7)−0.0053 (7)0.0091 (7)
C30.0560 (8)0.0437 (8)0.0788 (11)0.0036 (6)0.0088 (8)0.0134 (7)
C140.0540 (8)0.0558 (9)0.0452 (7)0.0055 (7)0.0118 (6)−0.0064 (6)
C20.0685 (9)0.0341 (7)0.0638 (9)0.0034 (6)0.0202 (8)0.0038 (6)
C130.0456 (7)0.0608 (9)0.0469 (7)−0.0033 (6)0.0150 (6)−0.0047 (6)
C80.0486 (7)0.0684 (11)0.0566 (9)0.0095 (7)0.0013 (6)−0.0029 (7)
C100.0587 (9)0.0943 (14)0.0512 (9)0.0004 (9)−0.0072 (7)0.0113 (9)
C110.0553 (8)0.0759 (11)0.0434 (7)−0.0118 (8)0.0008 (6)−0.0050 (7)
C150.0830 (12)0.0568 (10)0.0602 (10)−0.0058 (9)0.0134 (8)−0.0081 (8)
C90.0587 (9)0.0832 (12)0.0681 (11)0.0157 (9)−0.0038 (8)0.0121 (10)
N10.0435 (6)0.0475 (6)0.0402 (6)−0.0038 (5)0.0066 (4)−0.0041 (5)

Geometric parameters (Å, °)

S1—C121.7563 (17)C3—H30.9300
S1—C11.7599 (15)C14—C151.179 (2)
C1—C21.390 (2)C14—C131.473 (2)
C1—C61.3974 (19)C2—H20.9300
C12—C111.385 (2)C13—N11.4594 (16)
C12—C71.4034 (19)C13—H13A0.9700
C6—C51.3965 (19)C13—H13B0.9700
C6—N11.4162 (17)C8—C91.387 (2)
C7—C81.391 (2)C8—H80.9300
C7—N11.4151 (17)C10—C91.374 (3)
C5—C41.384 (2)C10—C111.379 (3)
C5—H50.9300C10—H100.9300
C4—C31.372 (2)C11—H110.9300
C4—H40.9300C15—H150.9300
C3—C21.380 (3)C9—H90.9300
C12—S1—C198.67 (7)C3—C2—H2119.7
C2—C1—C6120.44 (14)C1—C2—H2119.7
C2—C1—S1119.69 (12)N1—C13—C14114.10 (11)
C6—C1—S1119.73 (11)N1—C13—H13A108.7
C11—C12—C7120.73 (15)C14—C13—H13A108.7
C11—C12—S1119.52 (12)N1—C13—H13B108.7
C7—C12—S1119.66 (11)C14—C13—H13B108.7
C5—C6—C1118.04 (13)H13A—C13—H13B107.6
C5—C6—N1122.35 (12)C9—C8—C7120.59 (16)
C1—C6—N1119.61 (12)C9—C8—H8119.7
C8—C7—C12117.82 (14)C7—C8—H8119.7
C8—C7—N1122.48 (13)C9—C10—C11119.11 (16)
C12—C7—N1119.70 (13)C9—C10—H10120.4
C4—C5—C6120.38 (14)C11—C10—H10120.4
C4—C5—H5119.8C10—C11—C12120.58 (16)
C6—C5—H5119.8C10—C11—H11119.7
C3—C4—C5121.32 (15)C12—C11—H11119.7
C3—C4—H4119.3C14—C15—H15180.0
C5—C4—H4119.3C10—C9—C8121.09 (18)
C4—C3—C2118.93 (15)C10—C9—H9119.5
C4—C3—H3120.5C8—C9—H9119.5
C2—C3—H3120.5C7—N1—C6120.06 (10)
C15—C14—C13177.31 (16)C7—N1—C13117.11 (12)
C3—C2—C1120.68 (15)C6—N1—C13117.06 (11)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2063).

References

  • Aouine, Y., Faraj, H., Alami, A., El Hallaoui, A., Elachqar, A., El Hajji, S., Kerbal, A., Labriti, B., Martinez, J. & Rolland, V. (2008). J. Mar. Chim. Heterocycl 7, 44–49.
  • Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, W. J., Shi, Zh. D., Worthy, K. M., Bindu, L., Karki, R. G., Nicklaus, M. C., Fisher, R. J. Jr & Burke, T. R. (2006). Bioorg. Med. Chem. Lett 16, 5262–5265. [PMC free article] [PubMed]
  • Ji-Cai, F., Liang, J., Wang, Y. & Shang, Z.-C. (2007). Theochem, 821, 145–152.
  • Kalita, P. K., Baruah, B. & Bhuyan, P. J. (2006). Tetrahedron Lett.47, 7779–7782.
  • Kumar, R. R., Perumal, S. & Guillot, H. B. (2006). Tetrahedron, 62, 12380–12391.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sibi, M. P., Stanley, L. M. & Soeta, T. (2006). Adv. Synth. Catal 348, 2371–2375.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography