PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2744.
Published online 2010 October 9. doi:  10.1107/S1600536810039279
PMCID: PMC3009274

Ethyl 2-{(2Z)-2-[(1-naphthyl­sulfon­yl)imino]-2,3-dihydro-1,3-thia­zol-4-yl}acetate monohydrate

Abstract

The title compound, C17H16N2O4S2·H2O, is of inter­est with respect to its anti­diabetic and anti-obesity activity. In the crystal, the packing is stabilized by three cooperative inter­actions: offset π–π inter­actions [centroid–centroid distance = 3.604 (2) Å], as well as C—H(...)O and O—H(...)O hydrogen bonds. N—H(...)O inter­actions also occur.

Related literature

For similar structures and their anti­diabetic activity, see: Navarrete-Vázquez et al. (2008 [triangle]); Alberts et al. (2002 [triangle]); Barf et al. (2002 [triangle]); Fotsch & Wang (2008 [triangle]); Saiah (2008 [triangle]); Vicker et al. (2007 [triangle]). For hydrogen bonds, see: Adams et al. (1996 [triangle]); Desiraju & Steiner (1999 [triangle]); Hanton et al. (1992 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2744-scheme1.jpg

Experimental

Crystal data

  • C17H16N2O4S2·H2O
  • M r = 394.45
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2744-efi3.jpg
  • a = 29.582 (6) Å
  • b = 7.9657 (17) Å
  • c = 15.676 (3) Å
  • V = 3694.0 (14) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.32 mm−1
  • T = 273 K
  • 0.29 × 0.21 × 0.17 mm

Data collection

  • Bruker SMART APEX CCD area detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.913, T max = 0.948
  • 33131 measured reflections
  • 3255 independent reflections
  • 2488 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.143
  • S = 1.09
  • 3255 reflections
  • 236 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT-Plus-NT (Bruker, 2001 [triangle]); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: PLATON (Spek, 2009 [triangle]), DIAMOND (Bergerhoff et al., 1996 [triangle]) and publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810039279/jh2215sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039279/jh2215Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT) under grant No. 100608.

supplementary crystallographic information

Comment

The biochemistry and pharmacology of sulfur containing compounds are a subject of intense current interest, especially from the point of view of public health. Obesity and diabetes are major causes of morbidity and mortality in many countries (Saiah, 2008). Excessive levels of glucocorticoids into the body can cause both metabolic complications. The regulation of glucocorticoid production involves two 11b-hydroxysteroid dehydrogenase (11b-HSD) isozymes, that interconvert cortisone and cortisol. 11b-HSD1 is a reductase that amplifies glucocorticoid action in a tissue-specific manner (Fotsch et al., 2008).

Recent studies suggest that inhibition of 11b-HSD1 increases hepatic insulin sensivity along with decreased glucose production (Alberts et al. 2002). Selective inhibitors of 11b-HSD1 have considerable potential as treatments of type 2 diabetes and obesity (Vicker et al., 2007). BVT 14225 is a new selective 11b-HSD1 inhibitor, it belongs to a class of arylsulfonamidothiazoles with in vitro and in vivo antidiabetic effects (Barf et al., 2002).

In order to assist our knowledge about the electronic and steric requirements in arylsulfonamidothiazoles that show antidiabetic and antiobesity activities (Navarrete-Vázquez et al., 2008), we have synthesized and determined the crystal structure of the title compound (I), which is a precursor in the synthesis of an amide BVT14225 bioisoster.

In the crystal structure of (I), the molecules are linked by intermolecular C—H···O hydrogen bonds to give an overall two-dimensional hydrogen-bonded network paralell to plane bc (Fig. 2, Table 1) (Desiraju & Steiner, 1999). The crystal structure is further stabilized by C—H···O and O—H···O hydogen bonds with cocrystallized water molecules, thus generating the dimeric hydrogen-bonding motif outlined in Fig. 3 (Table 1). In addition, adjacent naphthyl groups show offset π···π interactions (Fig. 3), with a distance between the centroids C1—C5–10, C5—C10 (Cg1, Cg2) of the naphtyl rings of 3.604 (2) Å (Hanton et al., 1992; Adams et al., 1996).

Experimental

Naphthalene-1-sulfonylchloride (1.2 g, 0.0053 mol), was suspended in dry methylene chloride (10 ml) under nitrogen atmosphere. Triethylamine (0.9 ml, 0.0064 mol) was added slowly and stirred with a catalytic amount of 4-N,N-dimethylaminopyridine (0.1 eq). After 30 minutes, ethyl (2-amino-1,3-thiazol-4-yl)acetate (1 g, 0.0053 mol) was added dropwise, resulting in a brown solution. When all started material had been consumed, the solvent was removed in vacuo, the residue was neutralized with sodium bicarbonate. The precipitate resulting was filtered off to give a brown solid (m.p. 371 K). Single crystals of (I) were obtained from ethanol.

Refinement

H atoms were positioned geometrically and constrained using the riding-model approximation [C-Hthiazolyl and naphtyl = 0.93 Å, Uiso(Hthiazolyl and naphtyl)= 1.2 Ueq(C)]; [C-Hmethylene = 0.97 Å, Uiso(Hmethylene)= 1.2 Ueq(C)], [C-Hmethyl = 0.96 Å, Uiso(Hmethyl)= 1.5 Ueq(C)]. The hydrogen atoms bonded to O5 and N2 were located by difference Fourier maps. Its coordinates were refined with a distance restraint: O—H = 0.84 Å and [Uiso(H) = 1.5 Ueq(O)], N—H = 0.86 Å and [Uiso(H) = 1.2 Ueq(N)].

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius.
Fig. 2.
View of the C—H···O hydrogen bonds (dashed lines) in (I) to give an overall two-dimensional hydrogen-bonded network paralell to plane bc. H atoms not involved in hydrogen-bonding, as well as napthyl and ethoxy carbonylmethyl ...
Fig. 3.
View of the dimeric hydrogen-bonding motif generated by C—H···O and O—H···O hydogen bonds (dashed lines) with cocrystallized water molecules. Also, the offset π···π ...

Crystal data

C17H16N2O4S2·H2ODx = 1.419 Mg m3
Mr = 394.45Melting point: 371 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 7399 reflections
a = 29.582 (6) Åθ = 2.6–23.6°
b = 7.9657 (17) ŵ = 0.32 mm1
c = 15.676 (3) ÅT = 273 K
V = 3694.0 (14) Å3Rectangular prism, colourless
Z = 80.29 × 0.21 × 0.17 mm
F(000) = 1648

Data collection

Bruker SMART APEX CCD area detector diffractometer3255 independent reflections
Radiation source: fine-focus sealed tube2488 reflections with I > 2σ(I)
graphiteRint = 0.056
Detector resolution: 8.3 pixels mm-1θmax = 25.0°, θmin = 1.4°
phi and ω scansh = −35→35
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −9→9
Tmin = 0.913, Tmax = 0.948l = −18→18
33131 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0753P)2 + 1.2945P] where P = (Fo2 + 2Fc2)/3
3255 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.30111 (9)1.0099 (3)−0.01807 (17)0.0476 (7)
C20.27124 (10)1.0650 (4)0.0426 (2)0.0579 (8)
H20.28181.11800.09150.069*
C30.22466 (11)1.0411 (4)0.0306 (3)0.0694 (9)
H30.20441.07760.07190.083*
C40.20921 (10)0.9652 (4)−0.0408 (2)0.0679 (9)
H40.17820.9534−0.04870.081*
C50.23901 (10)0.9033 (4)−0.1037 (2)0.0562 (8)
C60.22292 (12)0.8195 (5)−0.1765 (2)0.0724 (10)
H60.19190.8057−0.18380.087*
C70.25155 (14)0.7585 (5)−0.2363 (2)0.0794 (11)
H70.24020.7041−0.28420.095*
C80.29822 (13)0.7776 (5)−0.2257 (2)0.0733 (9)
H80.31780.7355−0.26690.088*
C90.31544 (11)0.8571 (4)−0.15595 (18)0.0573 (7)
H90.34660.8675−0.14990.069*
C100.28653 (9)0.9240 (3)−0.09264 (18)0.0484 (7)
C110.38848 (8)0.8134 (3)0.08417 (17)0.0433 (6)
C120.40857 (8)0.5962 (3)0.17449 (16)0.0436 (6)
C130.39714 (10)0.7109 (4)0.23161 (18)0.0557 (7)
H130.39840.69300.29020.067*
C140.42320 (9)0.4204 (3)0.18915 (18)0.0496 (7)
H14A0.40130.34570.16300.060*
H14B0.42300.39860.25000.060*
C150.46919 (9)0.3790 (4)0.15489 (18)0.0508 (7)
C160.51735 (11)0.1490 (5)0.1211 (3)0.0821 (11)
H16A0.54250.18020.15750.099*
H16B0.52280.19290.06430.099*
C170.51244 (15)−0.0349 (5)0.1183 (3)0.1036 (14)
H17A0.5089−0.07740.17520.155*
H17B0.5389−0.08350.09280.155*
H17C0.4863−0.06370.08500.155*
N10.38373 (7)0.8826 (3)0.00845 (14)0.0499 (6)
N20.40331 (7)0.6559 (3)0.09207 (13)0.0428 (5)
H2A0.40930.59470.04830.051*
O10.36124 (7)1.1601 (2)0.07509 (14)0.0648 (6)
O20.37576 (7)1.1370 (3)−0.07715 (14)0.0639 (6)
O30.49668 (8)0.4789 (3)0.13212 (19)0.0858 (8)
O40.47548 (7)0.2156 (3)0.15495 (15)0.0698 (6)
O50.57738 (8)0.5513 (3)0.04480 (16)0.0876 (8)
H5A0.58420.65350.04840.131*
H5B0.55180.54500.06790.131*
S10.35869 (2)1.05939 (9)−0.00081 (5)0.0514 (2)
S20.37963 (3)0.89724 (10)0.18608 (5)0.0577 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0426 (14)0.0430 (14)0.0572 (16)−0.0020 (12)−0.0018 (12)0.0115 (13)
C20.0547 (18)0.0499 (17)0.0692 (19)0.0008 (13)0.0047 (15)0.0069 (15)
C30.0510 (18)0.063 (2)0.094 (3)0.0032 (15)0.0181 (18)0.0091 (19)
C40.0385 (15)0.067 (2)0.098 (3)−0.0065 (14)0.0017 (17)0.023 (2)
C50.0482 (17)0.0538 (17)0.0665 (18)−0.0140 (13)−0.0068 (14)0.0201 (15)
C60.062 (2)0.074 (2)0.082 (2)−0.0258 (18)−0.0198 (19)0.026 (2)
C70.097 (3)0.078 (2)0.063 (2)−0.034 (2)−0.019 (2)0.0146 (19)
C80.087 (3)0.075 (2)0.058 (2)−0.0155 (19)0.0034 (18)0.0084 (17)
C90.0561 (17)0.0624 (19)0.0534 (17)−0.0079 (14)0.0026 (14)0.0120 (15)
C100.0447 (15)0.0450 (15)0.0555 (16)−0.0063 (12)−0.0026 (13)0.0184 (13)
C110.0314 (12)0.0479 (15)0.0505 (16)−0.0008 (11)−0.0009 (11)−0.0038 (12)
C120.0347 (13)0.0540 (17)0.0422 (14)0.0008 (11)0.0002 (11)0.0044 (12)
C130.0617 (17)0.0663 (19)0.0391 (15)0.0072 (15)0.0040 (13)0.0001 (14)
C140.0413 (15)0.0563 (17)0.0512 (16)0.0022 (12)0.0036 (12)0.0065 (13)
C150.0423 (15)0.0605 (19)0.0494 (16)0.0001 (14)−0.0031 (12)−0.0024 (14)
C160.0498 (18)0.092 (3)0.105 (3)0.0127 (17)0.0076 (18)−0.036 (2)
C170.088 (3)0.086 (3)0.137 (4)0.028 (2)0.028 (3)−0.019 (3)
N10.0469 (13)0.0547 (14)0.0480 (13)0.0037 (11)−0.0023 (10)0.0069 (11)
N20.0409 (12)0.0480 (13)0.0395 (11)0.0024 (10)0.0001 (9)−0.0034 (9)
O10.0653 (14)0.0492 (12)0.0798 (15)0.0002 (9)−0.0171 (11)−0.0087 (11)
O20.0493 (11)0.0649 (13)0.0774 (14)−0.0120 (10)−0.0017 (10)0.0266 (11)
O30.0549 (13)0.0784 (16)0.124 (2)−0.0084 (13)0.0285 (13)−0.0052 (15)
O40.0510 (12)0.0629 (14)0.0955 (17)0.0114 (10)0.0146 (11)−0.0053 (12)
O50.0865 (17)0.0755 (16)0.1008 (18)−0.0314 (13)0.0476 (14)−0.0389 (14)
S10.0429 (4)0.0474 (4)0.0641 (5)−0.0047 (3)−0.0060 (3)0.0101 (3)
S20.0665 (5)0.0547 (5)0.0520 (4)0.0092 (4)0.0064 (3)−0.0083 (3)

Geometric parameters (Å, °)

C1—C21.370 (4)C12—N21.385 (3)
C1—C101.421 (4)C12—C141.484 (4)
C1—S11.769 (3)C13—S21.727 (3)
C2—C31.404 (4)C13—H130.9300
C2—H20.9300C14—C151.499 (4)
C3—C41.352 (5)C14—H14A0.9700
C3—H30.9300C14—H14B0.9700
C4—C51.411 (5)C15—O31.193 (3)
C4—H40.9300C15—O41.315 (3)
C5—C61.406 (4)C16—O41.448 (4)
C5—C101.426 (4)C16—C171.473 (5)
C6—C71.353 (5)C16—H16A0.9700
C6—H60.9300C16—H16B0.9700
C7—C81.399 (5)C17—H17A0.9600
C7—H70.9300C17—H17B0.9600
C8—C91.363 (4)C17—H17C0.9600
C8—H80.9300N1—S11.598 (2)
C9—C101.414 (4)N2—H2A0.8600
C9—H90.9300O1—S11.437 (2)
C11—N11.316 (3)O2—S11.439 (2)
C11—N21.335 (3)O5—H5A0.8399
C11—S21.751 (3)O5—H5B0.8400
C12—C131.323 (4)
C2—C1—C10121.9 (3)C12—C13—H13123.5
C2—C1—S1116.3 (2)S2—C13—H13123.5
C10—C1—S1121.7 (2)C12—C14—C15114.6 (2)
C1—C2—C3119.8 (3)C12—C14—H14A108.6
C1—C2—H2120.1C15—C14—H14A108.6
C3—C2—H2120.1C12—C14—H14B108.6
C4—C3—C2120.2 (3)C15—C14—H14B108.6
C4—C3—H3119.9H14A—C14—H14B107.6
C2—C3—H3119.9O3—C15—O4124.4 (3)
C3—C4—C5121.5 (3)O3—C15—C14125.4 (3)
C3—C4—H4119.2O4—C15—C14110.2 (2)
C5—C4—H4119.2O4—C16—C17106.9 (3)
C6—C5—C4121.4 (3)O4—C16—H16A110.3
C6—C5—C10119.2 (3)C17—C16—H16A110.3
C4—C5—C10119.4 (3)O4—C16—H16B110.3
C7—C6—C5121.4 (3)C17—C16—H16B110.3
C7—C6—H6119.3H16A—C16—H16B108.6
C5—C6—H6119.3C16—C17—H17A109.5
C6—C7—C8119.8 (3)C16—C17—H17B109.5
C6—C7—H7120.1H17A—C17—H17B109.5
C8—C7—H7120.1C16—C17—H17C109.5
C9—C8—C7120.9 (3)H17A—C17—H17C109.5
C9—C8—H8119.5H17B—C17—H17C109.5
C7—C8—H8119.5C11—N1—S1120.0 (2)
C8—C9—C10120.8 (3)C11—N2—C12116.5 (2)
C8—C9—H9119.6C11—N2—H2A121.8
C10—C9—H9119.6C12—N2—H2A121.8
C9—C10—C1125.1 (3)C15—O4—C16118.9 (3)
C9—C10—C5117.9 (3)H5A—O5—H5B104.1
C1—C10—C5117.0 (3)O1—S1—O2115.50 (13)
N1—C11—N2120.8 (2)O1—S1—N1113.12 (12)
N1—C11—S2130.3 (2)O2—S1—N1106.95 (13)
N2—C11—S2108.83 (19)O1—S1—C1107.55 (13)
C13—C12—N2111.4 (2)O2—S1—C1107.85 (13)
C13—C12—C14128.4 (2)N1—S1—C1105.29 (12)
N2—C12—C14120.1 (2)C13—S2—C1190.25 (13)
C12—C13—S2113.0 (2)
C10—C1—C2—C3−1.8 (4)N2—C12—C14—C1562.3 (3)
S1—C1—C2—C3175.5 (2)C12—C14—C15—O314.1 (4)
C1—C2—C3—C4−0.5 (5)C12—C14—C15—O4−167.2 (2)
C2—C3—C4—C52.1 (5)N2—C11—N1—S1170.26 (19)
C3—C4—C5—C6177.9 (3)S2—C11—N1—S1−11.7 (3)
C3—C4—C5—C10−1.3 (4)N1—C11—N2—C12178.0 (2)
C4—C5—C6—C7−179.3 (3)S2—C11—N2—C12−0.4 (3)
C10—C5—C6—C7−0.1 (5)C13—C12—N2—C110.4 (3)
C5—C6—C7—C80.4 (5)C14—C12—N2—C11177.6 (2)
C6—C7—C8—C90.0 (5)O3—C15—O4—C16−3.5 (5)
C7—C8—C9—C10−0.7 (5)C14—C15—O4—C16177.7 (3)
C8—C9—C10—C1−179.5 (3)C17—C16—O4—C15−172.3 (3)
C8—C9—C10—C50.9 (4)C11—N1—S1—O126.1 (3)
C2—C1—C10—C9−177.0 (3)C11—N1—S1—O2154.4 (2)
S1—C1—C10—C95.7 (4)C11—N1—S1—C1−91.0 (2)
C2—C1—C10—C52.5 (4)C2—C1—S1—O1−3.2 (2)
S1—C1—C10—C5−174.7 (2)C10—C1—S1—O1174.1 (2)
C6—C5—C10—C9−0.5 (4)C2—C1—S1—O2−128.4 (2)
C4—C5—C10—C9178.6 (3)C10—C1—S1—O248.9 (2)
C6—C5—C10—C1179.9 (3)C2—C1—S1—N1117.7 (2)
C4—C5—C10—C1−1.0 (4)C10—C1—S1—N1−65.0 (2)
N2—C12—C13—S2−0.2 (3)C12—C13—S2—C110.0 (2)
C14—C12—C13—S2−177.1 (2)N1—C11—S2—C13−177.9 (3)
C13—C12—C14—C15−121.0 (3)N2—C11—S2—C130.27 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.861.912.767 (3)177
O5—H5A···O2ii0.842.102.889 (3)157
C13—H13···O2iii0.932.573.295 (4)135
C14—H14A···O1iv0.972.343.295 (3)167
C17—H17B···O2i0.962.573.466 (5)155

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+2, −z; (iii) x, −y+2, z+1/2; (iv) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2215).

References

  • Adams, H., Carver, F. J., Hunter, C. A., Morales, J. C. & Seward, E. M. (1996). Angew. Chem. Int. Ed. Engl.35, 1542–1544.
  • Alberts, P., Engblom, L., Edling, N., Forsgren, M., Klingström, G., Larsson, C., Rönquist-Nii, Y., Öhman, B. & Abrahmsén, L. (2002). Diabetologia, 45, 1528–1532. [PubMed]
  • Barf, T., Vallgarda, J., Emond, R., Haggström, C., Kurz, G., Nygren, A., Larwood, V., Mosialou, E., Axelsson, K., Olsson, R., Englom, L., Edling, N., Rönquist-Nii, Y., Öhman, B., Alberts, P. & Abrahmsén, L. (2002). J. Med. Chem.45, 3813–3815. [PubMed]
  • Bergerhoff, G., Berndt, M. & Brandenburg, K. (1996). J. Res. Natl Inst. Stand. Technol.101, 221–225.
  • Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SAINT-Plus-NT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Desiraju, G. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 5–6. New York: Oxford University Press.
  • Fotsch, C. & Wang, M. (2008). J. Med. Chem.51, 4851–4857. [PubMed]
  • Hanton, L. R., Hunter, C. A. & Purvis, D. H. (1992). J. Chem. Soc. Chem. Commun. pp. 1134–1136.
  • Navarrete-Vázquez, G., Moreno-Diaz, H., Villalobos-Molina, R., Estrada-Soto, S. & Tlahuext, H. (2008). Acta Cryst. E64, o227. [PMC free article] [PubMed]
  • Saiah, E. (2008). Curr. Med. Chem.15, 642–649. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Vicker, N., Su, X., Ganeshapillai, D., Smith, A., Purohit, A., Reed, M. & Potter, B. V. L. (2007). J. Steroid Biochem. Mol. Biol.104, 123–129. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography