PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2888.
Published online 2010 October 23. doi:  10.1107/S1600536810041620
PMCID: PMC3009271

2-(2,5-Dichloro­benzene­sulfonamido)-3-methyl­butanoic acid

Abstract

The structure of the title compound, C11H13Cl2NO4S, shows one sulfonamide-O atom to lie almost in the plane of the benzene ring [C—C—S—O = −178.7 (2) °] and the other to one side [C—C—S—O = −49.4 (3)°]. Lying to the other side is the amine residue, which occupies a position almost perpendicular to the plane [C—S—N—C = 70.2 (2)°]; the carb­oxy­lic acid group is orientated to lie over the benzene ring. In the crystal, the appearance of an 11-membered {(...)OH(...)OCOH(...)OC2NH} synthon, which features the hy­droxy group forming both donor (to a carbonyl-O) and acceptor (from the amine-H) inter­actions, leads to the formation of a supra­molecular chain along the a axis. Chains are connected in the crystal structure by C—H(...)O contacts.

Related literature

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988 [triangle]); Mandell & Sande (1992 [triangle]). For related structures, see: Sharif et al. (2010 [triangle]); Khan et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2888-scheme1.jpg

Experimental

Crystal data

  • C11H13Cl2NO4S
  • M r = 326.18
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2888-efi1.jpg
  • a = 5.4584 (2) Å
  • b = 14.0623 (6) Å
  • c = 19.4545 (8) Å
  • V = 1493.28 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.58 mm−1
  • T = 293 K
  • 0.19 × 0.13 × 0.07 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.805, T max = 0.921
  • 14542 measured reflections
  • 3405 independent reflections
  • 2876 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.127
  • S = 1.00
  • 3405 reflections
  • 180 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.51 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1415 Friedel pairs
  • Flack parameter: 0.09 (8)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810041620/hg2730sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041620/hg2730Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.

supplementary crystallographic information

Comment

The crystal structure of the title compound, (I), was determined in connection with on-going structural studies of sulfonamides (Sharif et al., 2010; Khan et al., 2010), of interest owing to their biological properties (Korolkovas, 1988; Mandell & Sande, 1992).

With reference to the benzene ring in (I), Fig. 1, the O2 atom lies in the plane [the O2—S1—C1—C2 torsion angle = -178.7 (2) °] but the O1 atom lies out of the plane [O1—S1—C1—C2 = -49.4 (3) °]. The amine group lies to the opposite side of the plane to the O1 atom and occupies a position almost perpendicular to it [C1—S1—N1—C7 = 70.2 (2) °]. Within the amine residue, the carboxylic acid group is co-planar with the amine-N1 [N1—C7—C11—O4 = -1.6 (4) °], and is folded to be orientated over the benzene ring with the carbonyl-O4 atom closest to it.

In the crystal packing, the hydroxyl-O3 group forms both donor and acceptor interactions, the former to a symmetry related carbonyl-O4 and the latter with a symmetry related amine-N1—H atom, Table 1. These lead to a linear supramolecular chain, Fig. 2, aligned along the a axis and mediated by an 11-membered {···OH···OCOH···OC2NH} synthon; the chain is further stabilized by a C7—H7···O1 contact, Table 1. Chains are held in the crystal structure by C—H···O contacts, Fig. 3 and Table 1.

Experimental

To 2-amino-3-methylbutanoic acid (234 mg, 2 mmol) in distilled water (15 ml), was added 2,5-dichlorobenzenesulfonyl chloride (491 mg, 2 mmol) while maintaining the pH of reaction mixture at 8 by using 3% sodium carbonate solution. The consumption of the reactants was confirmed by TLC. The pH of reaction mixture was adjusted to 3 using 3 N HCl. The precipitates were washed with water and crystallized from methanol

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The O– and N-bound H atoms were refined with the distance restraints O—H = 0.82±0.01 Å and N–H = 0.86±0.01 Å, and with Uiso(H) = yUeq(parent atom) for y = 1.5 (parent atom = O) and y = 1.2 (N). In the final refinement four low angle reflections evidently effected by the beam stop were omitted, i.e. (002), (012), (011) and (021).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
Fig. 2.
A view of the linear supramolecular chain along the a axis in (I). The O–H···O and N–H···O hydrogen bonds are shown as orange and blue dashed lines, respectively.
Fig. 3.
View in projection down the a axis of the unit-cell contents for (I). The O–H···O, N–H···O and C—H···O contacts are shown as orange, blue and pink dashed lines, ...

Crystal data

C11H13Cl2NO4SF(000) = 672
Mr = 326.18Dx = 1.451 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4852 reflections
a = 5.4584 (2) Åθ = 2.6–25.1°
b = 14.0623 (6) ŵ = 0.58 mm1
c = 19.4545 (8) ÅT = 293 K
V = 1493.28 (10) Å3Prism, colourless
Z = 40.19 × 0.13 × 0.07 mm

Data collection

Bruker APEXII CCD diffractometer3405 independent reflections
Radiation source: fine-focus sealed tube2876 reflections with I > 2σ(I)
graphiteRint = 0.040
[var phi] and ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −5→7
Tmin = 0.805, Tmax = 0.921k = −18→18
14542 measured reflectionsl = −25→25

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127w = 1/[σ2(Fo2) + (0.0887P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3405 reflectionsΔρmax = 0.61 e Å3
180 parametersΔρmin = −0.51 e Å3
2 restraintsAbsolute structure: Flack (1983), 1415 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.09 (8)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.36922 (17)0.23427 (6)0.14486 (5)0.0617 (3)
Cl21.2300 (2)0.15728 (10)0.34471 (6)0.0952 (4)
S10.59333 (11)0.01761 (4)0.15989 (3)0.03515 (17)
O10.3334 (3)0.01414 (15)0.16803 (12)0.0491 (5)
O20.7383 (4)−0.06093 (14)0.18173 (11)0.0485 (5)
O31.1937 (3)0.12919 (13)0.00395 (12)0.0465 (5)
H3O1.231 (8)0.1812 (14)−0.0118 (19)0.070*
O40.8427 (4)0.19737 (14)0.03380 (13)0.0554 (6)
N10.6435 (4)0.03271 (15)0.07885 (11)0.0359 (5)
H1N0.528 (4)0.0668 (18)0.0625 (15)0.043*
C10.7060 (5)0.11804 (19)0.20583 (13)0.0375 (6)
C20.6085 (6)0.2087 (2)0.19980 (15)0.0475 (7)
C30.6997 (8)0.2826 (2)0.23875 (19)0.0671 (10)
H30.63160.34300.23480.080*
C40.8904 (8)0.2675 (3)0.28335 (19)0.0740 (12)
H40.95260.31720.30960.089*
C50.9879 (7)0.1778 (3)0.28870 (16)0.0615 (10)
C60.8996 (5)0.1019 (2)0.25120 (14)0.0453 (6)
H60.96730.04160.25600.054*
C70.8902 (5)0.02917 (16)0.05012 (13)0.0336 (5)
H71.00250.00630.08580.040*
C80.9042 (6)−0.0395 (2)−0.01197 (18)0.0525 (8)
H81.0741−0.0392−0.02830.063*
C90.7472 (9)−0.0072 (3)−0.0703 (2)0.0855 (13)
H9A0.7767−0.0468−0.10970.128*
H9B0.78600.0576−0.08150.128*
H9C0.5778−0.0117−0.05740.128*
C100.8466 (11)−0.1396 (2)0.0105 (3)0.103 (2)
H10A0.6806−0.14260.02660.155*
H10B0.9559−0.15780.04680.155*
H10C0.8666−0.1821−0.02780.155*
C110.9694 (5)0.12818 (16)0.02879 (14)0.0352 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0687 (5)0.0524 (4)0.0638 (5)0.0192 (4)0.0005 (4)0.0038 (4)
Cl20.0659 (6)0.1600 (11)0.0597 (6)−0.0443 (7)−0.0190 (5)0.0070 (7)
S10.0295 (3)0.0337 (3)0.0422 (3)−0.0026 (2)0.0021 (3)0.0031 (3)
O10.0314 (9)0.0567 (11)0.0593 (13)−0.0080 (9)0.0077 (9)−0.0015 (10)
O20.0518 (11)0.0383 (10)0.0553 (12)0.0021 (9)−0.0007 (10)0.0110 (8)
O30.0367 (10)0.0367 (10)0.0661 (13)−0.0051 (8)0.0044 (10)0.0114 (9)
O40.0589 (13)0.0357 (9)0.0717 (15)0.0117 (9)0.0111 (11)0.0116 (10)
N10.0282 (11)0.0421 (11)0.0375 (12)0.0024 (9)−0.0012 (9)0.0013 (9)
C10.0346 (13)0.0432 (14)0.0347 (13)−0.0069 (11)0.0054 (11)−0.0010 (11)
C20.0564 (19)0.0437 (14)0.0423 (16)−0.0038 (15)0.0099 (14)−0.0035 (11)
C30.097 (3)0.0490 (17)0.055 (2)−0.0171 (19)0.011 (2)−0.0090 (15)
C40.093 (3)0.074 (2)0.055 (2)−0.042 (2)0.002 (2)−0.0117 (18)
C50.0509 (19)0.094 (3)0.0393 (16)−0.0319 (18)0.0020 (15)−0.0026 (17)
C60.0367 (14)0.0618 (16)0.0375 (14)−0.0073 (14)0.0050 (12)0.0050 (12)
C70.0283 (12)0.0323 (11)0.0402 (13)0.0020 (10)−0.0001 (10)0.0013 (10)
C80.0497 (17)0.0456 (15)0.0623 (19)−0.0054 (14)0.0187 (16)−0.0146 (13)
C90.086 (3)0.115 (3)0.056 (2)−0.018 (3)−0.005 (2)−0.036 (2)
C100.150 (5)0.0403 (17)0.119 (4)−0.019 (2)0.050 (4)−0.026 (2)
C110.0336 (13)0.0321 (12)0.0399 (13)0.0004 (10)−0.0042 (11)0.0024 (10)

Geometric parameters (Å, °)

Cl1—C21.725 (3)C4—C51.372 (6)
Cl2—C51.737 (4)C4—H40.9300
S1—O21.424 (2)C5—C61.380 (5)
S1—O11.4286 (19)C6—H60.9300
S1—N11.614 (2)C7—C111.516 (3)
S1—C11.781 (3)C7—C81.549 (4)
O3—C111.317 (3)C7—H70.9800
O3—H3o0.82 (3)C8—C91.494 (6)
O4—C111.197 (3)C8—C101.506 (5)
N1—C71.459 (3)C8—H80.9800
N1—H1n0.853 (10)C9—H9A0.9600
C1—C21.387 (4)C9—H9B0.9600
C1—C61.395 (4)C9—H9C0.9600
C2—C31.379 (5)C10—H10A0.9600
C3—C41.372 (6)C10—H10B0.9600
C3—H30.9300C10—H10C0.9600
O2—S1—O1119.51 (12)N1—C7—C11109.66 (19)
O2—S1—N1107.41 (12)N1—C7—C8111.5 (2)
O1—S1—N1106.34 (13)C11—C7—C8110.2 (2)
O2—S1—C1105.87 (13)N1—C7—H7108.5
O1—S1—C1108.33 (13)C11—C7—H7108.5
N1—S1—C1109.10 (12)C8—C7—H7108.5
C11—O3—H3O112 (3)C9—C8—C10112.6 (4)
C7—N1—S1121.76 (17)C9—C8—C7112.0 (3)
C7—N1—H1N124 (2)C10—C8—C7110.3 (3)
S1—N1—H1N108 (2)C9—C8—H8107.2
C2—C1—C6119.6 (3)C10—C8—H8107.2
C2—C1—S1123.7 (2)C7—C8—H8107.2
C6—C1—S1116.8 (2)C8—C9—H9A109.5
C3—C2—C1120.5 (3)C8—C9—H9B109.5
C3—C2—Cl1117.2 (3)H9A—C9—H9B109.5
C1—C2—Cl1122.3 (2)C8—C9—H9C109.5
C4—C3—C2120.3 (4)H9A—C9—H9C109.5
C4—C3—H3119.8H9B—C9—H9C109.5
C2—C3—H3119.8C8—C10—H10A109.5
C3—C4—C5119.0 (3)C8—C10—H10B109.5
C3—C4—H4120.5H10A—C10—H10B109.5
C5—C4—H4120.5C8—C10—H10C109.5
C6—C5—C4122.3 (3)H10A—C10—H10C109.5
C6—C5—Cl2118.0 (3)H10B—C10—H10C109.5
C4—C5—Cl2119.7 (3)O4—C11—O3123.9 (2)
C5—C6—C1118.3 (3)O4—C11—C7124.0 (2)
C5—C6—H6120.9O3—C11—C7112.0 (2)
C1—C6—H6120.9
O2—S1—N1—C7−44.1 (2)C3—C4—C5—C6−0.6 (6)
O1—S1—N1—C7−173.12 (18)C3—C4—C5—Cl2179.8 (3)
C1—S1—N1—C770.2 (2)C4—C5—C6—C10.8 (5)
O2—S1—C1—C2−178.7 (2)Cl2—C5—C6—C1−179.6 (2)
O1—S1—C1—C2−49.4 (3)C2—C1—C6—C5−0.1 (4)
N1—S1—C1—C266.0 (3)S1—C1—C6—C5−178.7 (2)
O2—S1—C1—C6−0.2 (2)S1—N1—C7—C11−108.9 (2)
O1—S1—C1—C6129.1 (2)S1—N1—C7—C8128.8 (2)
N1—S1—C1—C6−115.5 (2)N1—C7—C8—C963.4 (3)
C6—C1—C2—C3−0.7 (4)C11—C7—C8—C9−58.6 (3)
S1—C1—C2—C3177.8 (3)N1—C7—C8—C10−62.8 (4)
C6—C1—C2—Cl1−180.0 (2)C11—C7—C8—C10175.2 (3)
S1—C1—C2—Cl1−1.6 (4)N1—C7—C11—O4−1.6 (4)
C1—C2—C3—C40.8 (5)C8—C7—C11—O4121.4 (3)
Cl1—C2—C3—C4−179.8 (3)N1—C7—C11—O3178.5 (2)
C2—C3—C4—C5−0.2 (6)C8—C7—C11—O3−58.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3o···O4i0.82 (3)1.86 (2)2.674 (3)171 (3)
N1—H1n···O3ii0.85 (2)2.32 (2)3.161 (3)167 (3)
C7—H7···O1iii0.982.423.341 (3)157
C4—H4···O2iv0.932.413.223 (5)146

Symmetry codes: (i) x+1/2, −y+1/2, −z; (ii) x−1, y, z; (iii) x+1, y, z; (iv) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2730).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Khan, I. U., Sharif, S., Batool, S., Mumtaz, A. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2641. [PMC free article] [PubMed]
  • Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed, pp. 699–716. New York: Wiley.
  • Mandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed, pp. 1047–1057. Singapore: McGraw-Hill.
  • Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography