PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2748.
Published online 2010 October 9. doi:  10.1107/S1600536810039528
PMCID: PMC3009261

4-Amino­benzoic acid–4,4′-(propane-1,3-diyl)dipyridine (1/1)

Abstract

In the crystal structure of the title compound, C13H14N2·C7H7NO2, the 4,4′-trimethyl­ene-dipyridine (TMDP) mol­ecule displays an approximately planar structure, the maximum atomic deviation excluding H atoms being 0.118 (2) Å and the dihedral angle between the pyridine rings 4.59 (10)°. The TMDP and 4-amino­benzoic acid (ABA) mol­ecules are linked by O—H(...)N and N—H(...)N hydrogen bonding, while ABA mol­ecules are linked by O—H(...)O hydrogen bonding. C—H(...)π interactions are also observed between the methyl­ene groups of TMDP mol­ecules and the benzene rings of ABA mol­ecules.

Related literature

For general background to 4-amino­benzoic acid as a ligand, see: Smith et al. (2005 [triangle]). For related structures, see: Lynch & McClenaghan (2001 [triangle]); Smith et al. (1997 [triangle], 2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2748-scheme1.jpg

Experimental

Crystal data

  • C13H14N2·C7H7NO2
  • M r = 335.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2748-efi1.jpg
  • a = 7.6417 (6) Å
  • b = 11.1708 (9) Å
  • c = 20.8775 (18) Å
  • β = 99.436 (2)°
  • V = 1758.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 297 K
  • 0.60 × 0.20 × 0.17 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • 9816 measured reflections
  • 3470 independent reflections
  • 2055 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.131
  • S = 1.02
  • 3470 reflections
  • 238 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810039528/xu5045sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039528/xu5045Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by Yuanpei University.

supplementary crystallographic information

Comment

4-Aminobenzoic acid is a useful ligand for structure extension through both the carboxylic acid and amine functional groups, forming linear hydrogen bonding associations (Smith et al., 2005). Other related reports with 4-aminobenzoic acid and Lewis base such as 4-(4-nitrobenzyl)pyridine (Smith, 1997), 4-aminobenzonitrile (smith et al., 2000) and 2-amino-4-(4-pyridyl)pyrimidine (Lynch & McClenaghan, 2001).

We present here the crystal structure analysis of the 1:1 4-aminobenzoic acid and 4,4'-trimethylene-dipyridine adduct (Fig 1). In the title compound, C13H14N2.C7H7NO2, comprises one 4-aminobenzoic acid molecule and one 4,4'-trimethylene-dipyridine molecule, with no proton transfer. The dihedral angle between pyridyl rings for the molecule is 4.59 (10) °.

4-Aminobenzoic acid molecules are linked by O—H···N hydrogen bonds to 4,4'-trimethylene-dipyridine, forming linear hydrogen bonding. The structure exhibits a hydrogen-bonding network involving NH···N(prridyl) [N···N 3.043 (3) Å], amine and carboxylic N—H··· O [N···O 3.152 (3) Å] (Table 1 and Fig. 2), respectively.

This layer is consolidated by C—H···π stackings, the distance between C13—H13Aiii···Cg3(C1—C6) and C14—H14Aiv···Cg3 are 2.87 and 2.88 Å [symmetry code: (iii) = X,1/2-Y,1/2+Z; (iV) = 1+X, 1/2-Y, 1/2+Z].

Experimental

The 4-aminobenzoic acid (137 mg, 1.0 mmol) and 4,4'-trimethylene-dipyridine (198 mg, 1.0 mmol) were dissolved in 20 ml methanol-water (1:1), the solution was refluxed for 30 min. The filtered solution was transferred to a 25 ml tube after one week at room temperature, and colorless transparent crystals formed (yield 50.22%).

Refinement

Water H and amino H atoms were located in a difference Fourier map and were refined isotropically with the distance constraints of O—H = 0.820±0.001 and N—H = 0.860±0.001 Å. Other H atoms were positioned geometrically with C—H = 0.93 (aromatic) and 0.97 Å (methylene), and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
Fig. 2.
The molecular packing for the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C13H14N2·C7H7NO2F(000) = 712
Mr = 335.40Dx = 1.267 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2559 reflections
a = 7.6417 (6) Åθ = 2.7–25.5°
b = 11.1708 (9) ŵ = 0.08 mm1
c = 20.8775 (18) ÅT = 297 K
β = 99.436 (2)°Block, colorless
V = 1758.1 (2) Å30.60 × 0.20 × 0.17 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer2055 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
graphiteθmax = 26.0°, θmin = 2.0°
[var phi] and ω scansh = −9→9
9816 measured reflectionsk = −12→13
3470 independent reflectionsl = −21→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0618P)2 + 0.1063P] where P = (Fo2 + 2Fc2)/3
3470 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.14 e Å3
3 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.2978 (2)0.32540 (12)0.38052 (6)0.0690 (4)
O20.3140 (2)0.13738 (12)0.41752 (7)0.0628 (4)
N1−0.0339 (3)0.04320 (17)0.12447 (8)0.0627 (5)
C10.1876 (2)0.24074 (15)0.25210 (9)0.0464 (5)
H10.22850.31920.25640.056*
C20.1117 (2)0.19990 (15)0.19194 (9)0.0470 (5)
H20.10270.25070.15630.056*
C30.0479 (2)0.08273 (15)0.18373 (8)0.0449 (4)
C40.0743 (2)0.00735 (15)0.23811 (9)0.0490 (5)
H40.0405−0.07260.23340.059*
C50.1492 (2)0.04932 (15)0.29817 (8)0.0450 (4)
H50.1630−0.00210.33370.054*
C60.2049 (2)0.16768 (15)0.30680 (8)0.0422 (4)
C70.2759 (3)0.21774 (17)0.37126 (9)0.0497 (5)
N20.4334 (2)0.23425 (14)0.53122 (8)0.0576 (4)
N30.8995 (3)0.22955 (18)1.01679 (8)0.0715 (5)
C80.4148 (3)0.35141 (18)0.53916 (10)0.0701 (6)
H80.36450.39660.50340.084*
C90.4660 (3)0.40938 (18)0.59730 (9)0.0643 (6)
H90.45180.49180.59990.077*
C100.5383 (2)0.34557 (15)0.65190 (8)0.0433 (4)
C110.5601 (3)0.22429 (16)0.64341 (9)0.0556 (5)
H110.61050.17710.67830.067*
C120.5072 (3)0.17298 (18)0.58325 (9)0.0599 (6)
H120.52410.09110.57890.072*
C130.5864 (2)0.40875 (15)0.71617 (8)0.0480 (5)
H13A0.47960.44540.72680.058*
H13B0.66800.47300.71070.058*
C140.6693 (2)0.33409 (16)0.77385 (8)0.0467 (5)
H14A0.78190.30240.76590.056*
H14B0.59220.26700.77910.056*
C150.6987 (3)0.40804 (16)0.83572 (8)0.0506 (5)
H15A0.77880.47300.82990.061*
H15B0.58620.44360.84100.061*
C160.7721 (2)0.34403 (17)0.89766 (9)0.0482 (5)
C170.7995 (3)0.22242 (19)0.90228 (10)0.0707 (6)
H170.77630.17500.86530.085*
C180.8616 (3)0.1705 (2)0.96176 (11)0.0794 (7)
H180.87760.08790.96300.095*
C190.8731 (3)0.3476 (2)1.01235 (10)0.0758 (7)
H190.89810.39261.05020.091*
C200.8115 (3)0.4068 (2)0.95554 (10)0.0671 (6)
H200.79610.48940.95590.080*
H1A−0.062 (3)0.0975 (14)0.0954 (8)0.081 (8)*
H1B−0.094 (2)−0.0219 (10)0.1227 (10)0.078 (8)*
H2A0.350 (3)0.167 (2)0.4531 (6)0.103 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0985 (12)0.0443 (8)0.0564 (9)−0.0035 (8)−0.0104 (8)−0.0094 (7)
O20.0919 (11)0.0506 (8)0.0408 (8)0.0001 (7)−0.0047 (7)−0.0014 (7)
N10.0825 (14)0.0561 (11)0.0444 (10)−0.0045 (11)−0.0043 (9)−0.0057 (10)
C10.0511 (11)0.0361 (9)0.0506 (11)−0.0010 (8)0.0043 (9)−0.0006 (8)
C20.0559 (12)0.0445 (10)0.0398 (10)0.0029 (9)0.0052 (9)0.0050 (8)
C30.0484 (11)0.0443 (10)0.0411 (10)0.0031 (8)0.0046 (8)−0.0053 (8)
C40.0589 (12)0.0366 (9)0.0509 (11)−0.0040 (9)0.0068 (9)−0.0032 (8)
C50.0511 (11)0.0414 (10)0.0418 (10)0.0007 (8)0.0052 (8)0.0043 (8)
C60.0434 (10)0.0399 (9)0.0414 (10)0.0032 (8)0.0016 (8)−0.0026 (8)
C70.0536 (12)0.0464 (11)0.0469 (11)0.0037 (9)0.0012 (9)−0.0016 (9)
N20.0750 (12)0.0542 (10)0.0403 (9)−0.0031 (9)−0.0007 (8)−0.0030 (8)
N30.0816 (13)0.0886 (14)0.0413 (10)0.0064 (11)0.0011 (9)0.0041 (10)
C80.1005 (18)0.0587 (13)0.0430 (12)0.0066 (12)−0.0118 (11)0.0034 (10)
C90.0930 (17)0.0475 (11)0.0469 (12)0.0052 (11)−0.0046 (11)0.0028 (10)
C100.0459 (11)0.0444 (10)0.0388 (10)−0.0034 (8)0.0047 (8)−0.0008 (8)
C110.0769 (14)0.0484 (11)0.0390 (11)0.0047 (10)0.0019 (10)0.0027 (9)
C120.0829 (15)0.0472 (11)0.0473 (12)−0.0006 (11)0.0038 (11)−0.0031 (9)
C130.0558 (12)0.0454 (10)0.0414 (10)−0.0013 (9)0.0042 (9)−0.0026 (9)
C140.0506 (11)0.0498 (10)0.0390 (10)0.0000 (9)0.0050 (8)−0.0014 (8)
C150.0573 (12)0.0524 (11)0.0411 (10)−0.0008 (9)0.0052 (9)−0.0024 (9)
C160.0488 (11)0.0576 (12)0.0380 (10)−0.0023 (9)0.0062 (8)−0.0029 (9)
C170.1055 (18)0.0632 (13)0.0407 (12)0.0134 (13)0.0039 (11)−0.0054 (10)
C180.115 (2)0.0710 (14)0.0498 (14)0.0199 (14)0.0069 (13)0.0050 (12)
C190.0960 (19)0.0853 (17)0.0408 (13)−0.0093 (14)−0.0048 (12)−0.0106 (12)
C200.0840 (16)0.0632 (13)0.0495 (13)−0.0069 (12)−0.0026 (11)−0.0086 (11)

Geometric parameters (Å, °)

O1—C71.225 (2)C9—H90.9300
O2—C71.316 (2)C10—C111.380 (2)
O2—H2A0.819 (15)C10—C131.507 (2)
N1—C31.365 (2)C11—C121.379 (3)
N1—H1A0.860 (16)C11—H110.9300
N1—H1B0.858 (13)C12—H120.9300
C1—C21.372 (2)C13—C141.515 (2)
C1—C61.392 (2)C13—H13A0.9700
C1—H10.9300C13—H13B0.9700
C2—C31.398 (2)C14—C151.519 (2)
C2—H20.9300C14—H14A0.9700
C3—C41.401 (2)C14—H14B0.9700
C4—C51.373 (2)C15—C161.503 (2)
C4—H40.9300C15—H15A0.9700
C5—C61.392 (2)C15—H15B0.9700
C5—H50.9300C16—C171.376 (3)
C6—C71.476 (2)C16—C201.387 (3)
N2—C121.329 (2)C17—C181.382 (3)
N2—C81.330 (2)C17—H170.9300
N3—C181.316 (3)C18—H180.9300
N3—C191.335 (3)C19—C201.373 (3)
C8—C91.375 (3)C19—H190.9300
C8—H80.9300C20—H200.9300
C9—C101.381 (2)
C7—O2—H2A112.9 (18)C10—C11—H11120.0
C3—N1—H1A115.9 (15)N2—C12—C11123.50 (18)
C3—N1—H1B118.4 (15)N2—C12—H12118.2
H1A—N1—H1B120 (2)C11—C12—H12118.2
C2—C1—C6121.66 (16)C10—C13—C14117.31 (15)
C2—C1—H1119.2C10—C13—H13A108.0
C6—C1—H1119.2C14—C13—H13A108.0
C1—C2—C3120.68 (17)C10—C13—H13B108.0
C1—C2—H2119.7C14—C13—H13B108.0
C3—C2—H2119.7H13A—C13—H13B107.2
N1—C3—C2120.86 (17)C13—C14—C15111.15 (15)
N1—C3—C4121.59 (17)C13—C14—H14A109.4
C2—C3—C4117.54 (16)C15—C14—H14A109.4
C5—C4—C3121.20 (16)C13—C14—H14B109.4
C5—C4—H4119.4C15—C14—H14B109.4
C3—C4—H4119.4H14A—C14—H14B108.0
C4—C5—C6121.04 (16)C16—C15—C14117.08 (16)
C4—C5—H5119.5C16—C15—H15A108.0
C6—C5—H5119.5C14—C15—H15A108.0
C5—C6—C1117.71 (16)C16—C15—H15B108.0
C5—C6—C7122.47 (16)C14—C15—H15B108.0
C1—C6—C7119.81 (16)H15A—C15—H15B107.3
O1—C7—O2123.08 (17)C17—C16—C20115.43 (19)
O1—C7—C6122.41 (17)C17—C16—C15124.14 (17)
O2—C7—C6114.51 (16)C20—C16—C15120.40 (18)
C12—N2—C8116.41 (17)C16—C17—C18120.2 (2)
C18—N3—C19115.21 (19)C16—C17—H17119.9
N2—C8—C9123.57 (19)C18—C17—H17119.9
N2—C8—H8118.2N3—C18—C17124.6 (2)
C9—C8—H8118.2N3—C18—H18117.7
C8—C9—C10120.21 (18)C17—C18—H18117.7
C8—C9—H9119.9N3—C19—C20124.3 (2)
C10—C9—H9119.9N3—C19—H19117.9
C11—C10—C9116.17 (17)C20—C19—H19117.9
C11—C10—C13123.86 (17)C19—C20—C16120.3 (2)
C9—C10—C13119.96 (16)C19—C20—H20119.9
C12—C11—C10120.10 (18)C16—C20—H20119.9
C12—C11—H11120.0

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.82 (2)1.81 (2)2.632 (2)179 (3)
N1—H1A···N3i0.86 (2)2.19 (2)3.045 (3)172 (2)
N1—H1B···O1ii0.86 (1)2.30 (1)3.151 (3)170 (1)
C13—H13A···Cg3iii0.972.873.6606 (17)139
C14—H14A···Cg3iv0.972.883.6902 (17)142

Symmetry codes: (i) x−1, y, z−1; (ii) −x, y−1/2, −z+1/2; (iii) x, −y+1/2, z+1/2; (iv) x+1, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5045).

References

  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2000). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Lynch, D. E. & McClenaghan, I. (2001). Acta Cryst. C57, 830–832. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G., Baldry, K. E., Byriel, K. A. & Kennard, C. H. L. (1997). Aust. J. Chem.50, 727–736.
  • Smith, G., Bott, R. C. & Lynch, D. E. (2000). Acta Cryst. C56, 1155–1156.
  • Smith, G., Wermuth, U. D. & White, J. M. (2005). Acta Cryst. E61, o313–o316.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography