PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2793.
Published online 2010 October 13. doi:  10.1107/S1600536810038924
PMCID: PMC3009257

Tripropyl­ammonium trithio­cyanurate

Abstract

In the title compound (systematic name: tripropyl­azanium 2,4,6-tris­ulfanyl­idene­cyclo­hexan-1-ide), (C3H7)3HN+·C3H2N3S3 , one H atom of trithio­cyanuric acid is accepted by tripropyl­amine to form the ammonium ion. Coplanar trithio­cyanurate and tripropyl­ammonium ions [dihedral angle = 82.33 (8)°] form the salt, which is stabilised by various N—H(...)S and N—H(...)N contacts.

Related literature

For the crystal structures of tetra­phenyl­phospho­nium salts of trithio­cyanuric acid, see: Dean et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2793-scheme1.jpg

Experimental

Crystal data

  • C9H22N+·C3H2N3S3
  • M r = 320.53
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2793-efi1.jpg
  • a = 8.3677 (5) Å
  • b = 12.8827 (8) Å
  • c = 16.5339 (10) Å
  • V = 1782.33 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.41 mm−1
  • T = 296 K
  • 0.61 × 0.27 × 0.21 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.788, T max = 0.919
  • 5690 measured reflections
  • 3675 independent reflections
  • 3232 reflections with I > 2σ(I)
  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.097
  • S = 1.03
  • 3675 reflections
  • 181 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.20 e Å−3
  • Absolute structure: Flack & Bernardinelli (2000 [triangle]), 1316 Friedel pairs
  • Flack parameter: −0.04 (8)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810038924/rn2070sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038924/rn2070Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks the Key Laboratory of Eco-environment-related Polymer Materials of Northwest Normal University for supporting this work.

supplementary crystallographic information

Comment

Trithiocyanuric acid, which can be regarded as the polymer of three thiourea molecules, tends to form various hydrogen bonds with its hydrogen-bond donor and acceptor (Dean et al. 2004). Here we reported the cocrystal of the tripropylammonium cation and trithiocyanurate with a molar ratio of 1:1, (C3H7)3HN+.C3H2N3S3-. In this structure, the independent planar trithiocyanurate anion only form a pair of N—H···S hydrogen bonds, of which N···S distances are 3.404 (2) Å and 3.291 (2) Å and the corresponding angles 166.6° and 169.7°, to generate the hydrogen-bonded ribbons along the b axis, and these ribbons which are translated by 21 rotation axis are orderly arranged almost along the (101) and (101)directions. Subsequently, the central N—H group of the ammonium cation can form an N—H···N donor hydrogen bond (N···N distance is 2.867 (2) Å and the related angle is 172.5°) with one of the nitrogen atom located in the trithiocyanurate to generate the final stable cocrystal.

Experimental

Trithiocyanuric acid (0.044 g, 0.25 mmol) was dissolved in a water-ethanol (1:2 v/v) mixture and tripropylamine was added to neutralize the acid. Colorless block crystals formed after several weeks.

Refinement

All hydrogen atoms bonded to carbon were introduced to idealized positions and allowed to ride on their parent atoms. Hydrogen atoms bonded to nitrogen were located in difference Fourier syntheses with N—H distance of 0.93 Å.

Figures

Fig. 1.
Thermal ellipsoid plot of the title compound at the 30% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Fig. 2.
Hydrogen bond pattern in the crystal structure of the title compound; all hydrogen atoms bonded to carbon and carbon atoms of the tripropylammonium cation are omitted for clarity and the cations are represented with the hatched spheres.

Crystal data

C9H22N+·C3H2N3S3F(000) = 688
Mr = 320.53Dx = 1.195 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 8.3677 (5) ŵ = 0.41 mm1
b = 12.8827 (8) ÅT = 296 K
c = 16.5339 (10) ÅBlock, colorless
V = 1782.33 (19) Å30.61 × 0.27 × 0.21 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer3675 independent reflections
Radiation source: fine-focus sealed tube3232 reflections with I > 2σ(I)
graphiteRint = 0.013
phi and ω scansθmax = 27.6°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −4→10
Tmin = 0.788, Tmax = 0.919k = −16→16
5690 measured reflectionsl = −17→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097w = 1/[σ2(Fo2) + (0.057P)2 + 0.1498P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3675 reflectionsΔρmax = 0.24 e Å3
181 parametersΔρmin = −0.20 e Å3
3 restraintsAbsolute structure: Flack & Bernardinelli (2000), 1316 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.04 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N40.25770 (18)0.02494 (16)0.48456 (11)0.0513 (4)
H40.307 (3)0.020 (2)0.5345 (9)0.077*
C40.3656 (3)0.0945 (2)0.43528 (14)0.0603 (6)
H4A0.37710.16020.46340.072*
H4B0.47060.06290.43240.072*
C50.3087 (3)0.1159 (2)0.35052 (17)0.0726 (7)
H5A0.21160.15700.35250.087*
H5B0.28430.05090.32370.087*
C70.2386 (3)−0.0818 (2)0.44928 (15)0.0596 (5)
H7A0.1680−0.07750.40290.072*
H7B0.1872−0.12590.48910.072*
C80.3920 (3)−0.1327 (2)0.42319 (19)0.0756 (7)
H8A0.4343−0.09670.37630.091*
H8B0.4700−0.12750.46640.091*
C90.3658 (6)−0.2448 (3)0.4026 (3)0.1228 (14)
H9A0.4652−0.27540.38620.184*
H9B0.2899−0.25000.35930.184*
H9C0.3255−0.28070.44920.184*
C100.0991 (2)0.0762 (2)0.50164 (16)0.0605 (5)
H10A0.11810.14690.51940.073*
H10B0.03800.07940.45180.073*
C110.0026 (4)0.0216 (3)0.5642 (2)0.0995 (11)
H11A−0.0111−0.05010.54760.119*
H11B0.06200.02150.61450.119*
C12−0.1564 (4)0.0668 (4)0.5792 (3)0.1253 (15)
H12A−0.21040.02720.62010.188*
H12B−0.21780.06550.53020.188*
H12C−0.14460.13730.59720.188*
C60.4346 (4)0.1736 (3)0.3029 (2)0.1079 (12)
H6A0.39620.18650.24920.162*
H6B0.53020.13250.30030.162*
H6C0.45760.23850.32910.162*
N10.5530 (2)−0.05504 (13)0.74298 (10)0.0468 (4)
H10.579 (3)−0.1170 (12)0.7667 (15)0.070*
N20.5353 (2)0.12080 (13)0.74422 (11)0.0456 (4)
H20.556 (3)0.1813 (12)0.7704 (14)0.068*
N30.40788 (18)0.02890 (11)0.64040 (10)0.0449 (3)
S10.40179 (9)−0.17606 (4)0.63935 (4)0.06707 (19)
C10.4565 (2)−0.05976 (15)0.67496 (12)0.0451 (4)
S20.37526 (8)0.23360 (4)0.63897 (4)0.06029 (17)
C20.5970 (2)0.03521 (15)0.77943 (11)0.0433 (4)
S30.71163 (7)0.03940 (5)0.86074 (4)0.06204 (17)
C30.4425 (2)0.12015 (15)0.67552 (13)0.0433 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N40.0444 (8)0.0640 (11)0.0455 (10)−0.0042 (8)−0.0042 (7)0.0042 (9)
C40.0544 (12)0.0713 (15)0.0551 (14)−0.0120 (11)−0.0025 (10)0.0083 (11)
C50.0656 (15)0.0872 (18)0.0652 (17)−0.0049 (12)−0.0052 (13)0.0186 (14)
C70.0542 (12)0.0604 (14)0.0644 (14)−0.0008 (10)−0.0020 (10)0.0050 (12)
C80.0701 (16)0.0829 (19)0.0738 (18)0.0131 (14)0.0119 (14)0.0102 (14)
C90.135 (3)0.081 (2)0.153 (4)0.027 (2)0.041 (3)−0.012 (2)
C100.0527 (11)0.0668 (14)0.0620 (14)0.0011 (11)0.0006 (10)−0.0056 (12)
C110.0817 (19)0.111 (3)0.106 (2)0.0086 (19)0.0401 (18)0.022 (2)
C120.090 (2)0.151 (4)0.135 (3)0.003 (2)0.051 (2)−0.023 (3)
C60.101 (2)0.139 (3)0.085 (2)−0.013 (2)0.012 (2)0.042 (2)
N10.0544 (9)0.0391 (9)0.0470 (10)0.0028 (7)−0.0065 (7)0.0042 (7)
N20.0514 (9)0.0403 (9)0.0452 (10)−0.0020 (7)−0.0070 (7)−0.0003 (7)
N30.0556 (8)0.0365 (7)0.0425 (8)−0.0003 (7)−0.0068 (7)0.0030 (8)
S10.1045 (5)0.0372 (3)0.0596 (4)−0.0009 (3)−0.0251 (4)−0.0006 (3)
C10.0522 (10)0.0395 (10)0.0435 (11)0.0010 (8)−0.0003 (8)0.0020 (8)
S20.0818 (4)0.0363 (2)0.0627 (4)0.0006 (2)−0.0236 (3)0.0047 (2)
C20.0377 (8)0.0468 (10)0.0454 (11)−0.0006 (8)0.0006 (7)0.0032 (9)
S30.0603 (3)0.0634 (3)0.0624 (4)0.0002 (3)−0.0234 (3)0.0022 (3)
C30.0455 (10)0.0404 (9)0.0441 (11)−0.0015 (7)−0.0009 (9)0.0029 (8)

Geometric parameters (Å, °)

N4—C71.503 (3)C10—H10B0.9700
N4—C101.509 (3)C11—C121.474 (5)
N4—C41.511 (3)C11—H11A0.9700
N4—H40.925 (10)C11—H11B0.9700
C4—C51.506 (4)C12—H12A0.9600
C4—H4A0.9700C12—H12B0.9600
C4—H4B0.9700C12—H12C0.9600
C5—C61.510 (4)C6—H6A0.9600
C5—H5A0.9700C6—H6B0.9600
C5—H5B0.9700C6—H6C0.9600
C7—C81.504 (3)N1—C21.360 (3)
C7—H7A0.9700N1—C11.386 (3)
C7—H7B0.9700N1—H10.915 (10)
C8—C91.499 (5)N2—C21.350 (2)
C8—H8A0.9700N2—C31.376 (3)
C8—H8B0.9700N2—H20.908 (10)
C9—H9A0.9600N3—C11.341 (2)
C9—H9B0.9600N3—C31.343 (2)
C9—H9C0.9600S1—C11.674 (2)
C10—C111.489 (4)S2—C31.679 (2)
C10—H10A0.9700C2—S31.6525 (19)
C7—N4—C10112.32 (16)N4—C10—H10A108.9
C7—N4—C4113.42 (18)C11—C10—H10B108.9
C10—N4—C4111.51 (19)N4—C10—H10B108.9
C7—N4—H4109.2 (19)H10A—C10—H10B107.7
C10—N4—H4104.8 (17)C12—C11—C10114.8 (3)
C4—N4—H4104.9 (17)C12—C11—H11A108.6
C5—C4—N4114.92 (18)C10—C11—H11A108.6
C5—C4—H4A108.5C12—C11—H11B108.6
N4—C4—H4A108.5C10—C11—H11B108.6
C5—C4—H4B108.5H11A—C11—H11B107.5
N4—C4—H4B108.5C11—C12—H12A109.5
H4A—C4—H4B107.5C11—C12—H12B109.5
C4—C5—C6110.7 (2)H12A—C12—H12B109.5
C4—C5—H5A109.5C11—C12—H12C109.5
C6—C5—H5A109.5H12A—C12—H12C109.5
C4—C5—H5B109.5H12B—C12—H12C109.5
C6—C5—H5B109.5C5—C6—H6A109.5
H5A—C5—H5B108.1C5—C6—H6B109.5
N4—C7—C8114.8 (2)H6A—C6—H6B109.5
N4—C7—H7A108.6C5—C6—H6C109.5
C8—C7—H7A108.6H6A—C6—H6C109.5
N4—C7—H7B108.6H6B—C6—H6C109.5
C8—C7—H7B108.6C2—N1—C1123.70 (17)
H7A—C7—H7B107.5C2—N1—H1119.4 (17)
C9—C8—C7111.1 (3)C1—N1—H1116.6 (17)
C9—C8—H8A109.4C2—N2—C3124.54 (17)
C7—C8—H8A109.4C2—N2—H2115.0 (17)
C9—C8—H8B109.4C3—N2—H2120.4 (17)
C7—C8—H8B109.4C1—N3—C3119.75 (16)
H8A—C8—H8B108.0N3—C1—N1119.04 (17)
C8—C9—H9A109.5N3—C1—S1121.99 (15)
C8—C9—H9B109.5N1—C1—S1118.96 (15)
H9A—C9—H9B109.5N2—C2—N1113.81 (16)
C8—C9—H9C109.5N2—C2—S3123.12 (15)
H9A—C9—H9C109.5N1—C2—S3123.06 (15)
H9B—C9—H9C109.5N3—C3—N2118.95 (17)
C11—C10—N4113.6 (2)N3—C3—S2122.30 (15)
C11—C10—H10A108.9N2—C3—S2118.75 (15)
C7—N4—C4—C561.7 (3)C2—N1—C1—N32.8 (3)
C10—N4—C4—C5−66.3 (3)C2—N1—C1—S1−176.22 (15)
N4—C4—C5—C6−172.3 (3)C3—N2—C2—N1−3.0 (3)
C10—N4—C7—C8174.1 (2)C3—N2—C2—S3178.48 (15)
C4—N4—C7—C846.6 (3)C1—N1—C2—N21.3 (3)
N4—C7—C8—C9170.0 (3)C1—N1—C2—S3179.77 (16)
C7—N4—C10—C1163.9 (3)C1—N3—C3—N23.6 (3)
C4—N4—C10—C11−167.5 (2)C1—N3—C3—S2−175.92 (16)
N4—C10—C11—C12−177.1 (3)C2—N2—C3—N30.7 (3)
C3—N3—C1—N1−5.2 (3)C2—N2—C3—S2−179.76 (16)
C3—N3—C1—S1173.75 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4···N30.93 (1)1.95 (1)2.867 (2)172 (3)
N1—H1···S2i0.92 (1)2.51 (1)3.4037 (17)167 (2)
N2—H2···S1ii0.91 (1)2.39 (1)3.2911 (17)170 (2)

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2070).

References

  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconson, USA.
  • Dean, P. A. W., Jennings, M., Houle, T. M., Craig, D. C., Dance, I. G., Hook, J. M. & Scudder, M. L. (2004). CrystEngComm, 6, 543–548.
  • Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst.33, 1143–1148.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography