PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1440.
Published online 2010 October 23. doi:  10.1107/S1600536810040341
PMCID: PMC3009255

catena-Poly[[(1,10-phenanthroline-κ2 N,N′)cadmium(II)]-μ-oxalato-κ4 O 1,O 2:O 1′,O 2′]

Abstract

In the title complex, [Cd(C2O4)(C12H8N2)]n, the CdII atom has a distorted octa­hedral coordination, defined by four O atoms from two symmetry-related oxalate ligands and by two N atoms from a bidentate 1,10-phenanthroline ligand. Each oxalate ligand bridges two CdII atoms, generating a zigzag chain structure propagating along [100]. The packing of the structure is consolidated by non-classical C—H(...)O hydrogen-bonding inter­actions.

Related literature

For general background to the rational design and synthesis of metal-organic polymers, see: Kondrashev et al. (1985 [triangle]); Orioli et al. (2002 [triangle]); Athar et al. (2008 [triangle]); Lv et al. (2010 [triangle]). Wu et al. (2003 [triangle]). For related structures, see: Cao et al. (2009 [triangle]); Jeanneau et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1440-scheme1.jpg

Experimental

Crystal data

  • [Cd(C2O4)(C12H8N2)]
  • M r = 380.62
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1440-efi1.jpg
  • a = 9.7199 (2) Å
  • b = 10.3338 (2) Å
  • c = 13.1638 (2) Å
  • V = 1322.22 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.67 mm−1
  • T = 296 K
  • 0.29 × 0.14 × 0.10 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.76, T max = 0.85
  • 11056 measured reflections
  • 2892 independent reflections
  • 2386 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.066
  • S = 1.00
  • 2892 reflections
  • 191 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.27 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1310 Friedel pairs
  • Flack parameter: 0.33 (4)

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2004 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810040341/wm2410sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040341/wm2410Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Rational design and synthesis of metal-organic polymers is of current interest in the field of supramolecular chemistry and crystal engineering (Athar et al., 2008; Lv et al., 2010; Wu et al., 2003). Among the anions involved in the formation of such solids, the oxalate anion, which possesses four donor O atoms, plays an important role. Indeed, it can act either as a monodentate or a bidentate chelating ligand and can thus bridge two or more metal atoms in a variety of arrangements, as recently shown with a number of compounds (Kondrashev et al., 1985; Jeanneau et al., 2001; Cao et al., 2009; Orioli et al., 2002). We report here on the synthesis and structure of the title compound, [Cd(C2O4)(C12H8N2)].

As shown in Fig. 1, the central Cd(II) atom is six-coordinated by four O atoms from two symmetry-related oxalate ligands and two N atoms from a bidendate 1,10-phenanthroline ligand (Table 1), forming a distorted octahedral geometry. Each oxalate ligand bridges two cadmium(II) atoms generating a zigzag chain structure propagating along [100]. Furthermore, there are non-classical C—H···O hydrogen bonds present (Table 2). Together with van der Waals forces they interconnect the zigzag chains and construct a supramolecular network (Fig. 2).

Experimental

The synthesis of the title complex (I) was carried out by hydrothermal reaction. A mixture of Cd(NO3)2.4H2O (1.0 mmol), K2C2O4 (1.0 mmol), 1,10-phenanthroline (1.0 mmol) in 20 ml water was placed in a Teflon-lined stainless steel autoclave and heated at 433 K for 72 h, and then cooled to room temperature over 3 days. The resulting colorless crystals suitable for X-ray analysis were obtained in about 36% yield.

Refinement

The H atoms bonded to C atoms were positioned geometrically [C—H 0.93 Å Uiso(H) = 1.2Ueq(C)]. The crystal measured was an inversion twin with a 2:1 ratio for the twin domains.

Figures

Fig. 1.
The asymmetric unit and some symmetry-related atoms of the title complex. Displacement ellipsoids are plotted at the 30% probability level and H atoms are not labeled. [Symmetry codes: (i) x-0.5, -y-0.5, z; (ii) x+0.5, -y-0.5, z.]
Fig. 2.
Packing diagram of the title compound viewed down [010]; all H atoms were omitted for clarity.

Crystal data

[Cd(C2O4)(C12H8N2)]F(000) = 744
Mr = 380.62Dx = 1.912 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2979 reflections
a = 9.7199 (2) Åθ = 2.5–27.4°
b = 10.3338 (2) ŵ = 1.67 mm1
c = 13.1638 (2) ÅT = 296 K
V = 1322.22 (4) Å3Block, colourless
Z = 40.29 × 0.14 × 0.10 mm

Data collection

Bruker APEXII area-detector diffractometer2892 independent reflections
Radiation source: fine-focus sealed tube2386 reflections with I > 2σ(I)
graphiteRint = 0.034
ω scansθmax = 27.4°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.76, Tmax = 0.85k = −13→13
11056 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.066w = 1/[σ2(Fo2) + (0.0359P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2892 reflectionsΔρmax = 0.37 e Å3
191 parametersΔρmin = −0.27 e Å3
1 restraintAbsolute structure: Flack (1983), 1310 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.33 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.38159 (2)−0.09300 (2)0.33607 (7)0.04611 (10)
O10.5669 (3)−0.1452 (3)0.2410 (2)0.0499 (7)
O20.5193 (3)−0.2166 (3)0.4361 (2)0.0579 (8)
O30.7580 (3)−0.2606 (3)0.2421 (2)0.0558 (8)
O40.6953 (3)−0.3510 (3)0.4301 (2)0.0475 (7)
N10.4604 (4)0.1011 (3)0.4063 (3)0.0488 (9)
N20.2834 (4)0.0751 (3)0.2463 (3)0.0480 (8)
C10.6195 (3)−0.2664 (4)0.3923 (4)0.0395 (11)
C20.6499 (5)−0.2203 (4)0.2815 (4)0.0413 (11)
C30.1925 (5)0.0621 (5)0.1726 (3)0.0591 (12)
H3A0.1661−0.02100.15390.071*
C40.1343 (5)0.1662 (7)0.1214 (4)0.0689 (15)
H4A0.06950.15320.07040.083*
C50.1737 (6)0.2856 (6)0.1474 (4)0.0677 (15)
H5A0.13750.35630.11280.081*
C60.2686 (4)0.3061 (4)0.2260 (4)0.0537 (11)
C70.3150 (6)0.4299 (5)0.2568 (5)0.0691 (14)
H7A0.28270.50280.22310.083*
C80.4037 (5)0.4444 (4)0.3329 (9)0.0735 (13)
H8A0.43150.52730.35120.088*
C90.4585 (5)0.3335 (4)0.3883 (4)0.0566 (11)
C100.5520 (6)0.3424 (6)0.4680 (4)0.0738 (15)
H10A0.58410.42310.48860.089*
C110.5964 (6)0.2351 (7)0.5155 (5)0.0736 (18)
H11A0.65840.24080.56910.088*
C120.5478 (6)0.1150 (5)0.4831 (4)0.0666 (14)
H12A0.57800.04120.51690.080*
C130.4163 (4)0.2091 (4)0.3576 (3)0.0436 (11)
C140.3214 (4)0.1959 (4)0.2760 (3)0.0424 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.04105 (14)0.04202 (14)0.05528 (16)0.00004 (11)−0.0025 (2)0.0066 (2)
O10.0474 (16)0.0561 (17)0.0462 (17)0.0046 (15)0.0020 (14)0.0163 (16)
O20.0529 (18)0.070 (2)0.0505 (17)0.0190 (16)0.0150 (16)0.0229 (17)
O30.0573 (19)0.0592 (17)0.0508 (17)0.0164 (15)0.0141 (15)0.0105 (15)
O40.0469 (15)0.0471 (15)0.0484 (16)0.0047 (13)0.0033 (13)0.0097 (14)
N10.0444 (19)0.056 (2)0.0457 (19)−0.0024 (16)−0.0074 (15)0.0050 (18)
N20.0466 (19)0.051 (2)0.0460 (19)0.0014 (15)−0.0064 (16)0.0079 (17)
C10.042 (3)0.038 (2)0.039 (2)−0.0019 (18)−0.0002 (18)0.001 (2)
C20.044 (2)0.032 (2)0.049 (3)−0.0045 (19)0.006 (2)0.006 (2)
C30.057 (3)0.069 (3)0.051 (3)−0.002 (2)−0.011 (2)0.006 (2)
C40.063 (3)0.089 (4)0.054 (3)0.001 (3)−0.013 (2)0.018 (3)
C50.061 (3)0.074 (4)0.068 (4)0.020 (3)0.002 (3)0.031 (3)
C60.047 (2)0.050 (2)0.064 (3)0.0105 (19)0.013 (2)0.015 (2)
C70.070 (3)0.049 (3)0.088 (4)0.013 (2)0.009 (3)0.010 (3)
C80.082 (3)0.0364 (19)0.102 (4)−0.0012 (19)0.031 (5)−0.002 (5)
C90.051 (3)0.049 (3)0.070 (3)−0.013 (2)0.013 (2)−0.010 (2)
C100.074 (4)0.074 (4)0.074 (4)−0.020 (3)0.012 (3)−0.015 (3)
C110.072 (4)0.100 (5)0.049 (3)−0.026 (3)−0.011 (3)−0.008 (3)
C120.066 (3)0.074 (3)0.060 (3)−0.014 (3)−0.018 (3)0.012 (3)
C130.0400 (18)0.045 (2)0.046 (3)−0.0005 (15)0.0091 (18)0.004 (2)
C140.043 (2)0.041 (2)0.043 (2)0.0026 (17)0.0074 (18)0.0054 (18)

Geometric parameters (Å, °)

Cd1—O12.258 (3)C4—C51.336 (9)
Cd1—O4i2.269 (3)C4—H4A0.9300
Cd1—O22.271 (3)C5—C61.402 (7)
Cd1—O3i2.294 (3)C5—H5A0.9300
Cd1—N22.307 (3)C6—C141.411 (5)
Cd1—N12.338 (3)C6—C71.416 (7)
O1—C21.240 (5)C7—C81.330 (11)
O2—C11.242 (5)C7—H7A0.9300
O3—C21.244 (5)C8—C91.459 (9)
O3—Cd1ii2.294 (3)C8—H8A0.9300
O4—C11.247 (5)C9—C101.392 (7)
O4—Cd1ii2.269 (3)C9—C131.409 (6)
N1—C121.329 (6)C10—C111.344 (9)
N1—C131.356 (5)C10—H10A0.9300
N2—C31.319 (6)C11—C121.394 (8)
N2—C141.359 (5)C11—H11A0.9300
C1—C21.563 (5)C12—H12A0.9300
C3—C41.391 (7)C13—C141.422 (6)
C3—H3A0.9300
O1—Cd1—O4i151.38 (10)C5—C4—C3118.3 (5)
O1—Cd1—O273.54 (9)C5—C4—H4A120.9
O4i—Cd1—O290.60 (10)C3—C4—H4A120.9
O1—Cd1—O3i87.77 (11)C4—C5—C6121.1 (5)
O4i—Cd1—O3i73.03 (10)C4—C5—H5A119.5
O2—Cd1—O3i104.50 (12)C6—C5—H5A119.5
O1—Cd1—N2103.06 (12)C5—C6—C14117.5 (4)
O4i—Cd1—N298.14 (12)C5—C6—C7123.9 (5)
O2—Cd1—N2164.61 (13)C14—C6—C7118.6 (5)
O3i—Cd1—N290.22 (13)C8—C7—C6121.6 (5)
O1—Cd1—N199.37 (13)C8—C7—H7A119.2
O4i—Cd1—N1105.35 (12)C6—C7—H7A119.2
O2—Cd1—N193.45 (13)C7—C8—C9121.7 (5)
O3i—Cd1—N1161.94 (12)C7—C8—H8A119.2
N2—Cd1—N172.07 (12)C9—C8—H8A119.2
C2—O1—Cd1115.5 (3)C10—C9—C13117.9 (5)
C1—O2—Cd1115.2 (3)C10—C9—C8124.3 (5)
C2—O3—Cd1ii116.0 (3)C13—C9—C8117.8 (5)
C1—O4—Cd1ii115.6 (3)C11—C10—C9120.4 (5)
C12—N1—C13118.3 (4)C11—C10—H10A119.8
C12—N1—Cd1127.1 (3)C9—C10—H10A119.8
C13—N1—Cd1114.5 (3)C10—C11—C12119.0 (5)
C3—N2—C14119.1 (4)C10—C11—H11A120.5
C3—N2—Cd1125.3 (3)C12—C11—H11A120.5
C14—N2—Cd1115.6 (3)N1—C12—C11123.0 (5)
O2—C1—O4124.6 (5)N1—C12—H12A118.5
O2—C1—C2117.1 (4)C11—C12—H12A118.5
O4—C1—C2118.3 (4)N1—C13—C9121.5 (4)
O1—C2—O3125.5 (5)N1—C13—C14118.9 (4)
O1—C2—C1117.9 (4)C9—C13—C14119.5 (4)
O3—C2—C1116.6 (4)N2—C14—C6120.5 (4)
N2—C3—C4123.4 (5)N2—C14—C13118.7 (3)
N2—C3—H3A118.3C6—C14—C13120.7 (4)
C4—C3—H3A118.3
O4i—Cd1—O1—C2−54.2 (5)O2—C1—C2—O3172.9 (5)
O2—Cd1—O1—C24.5 (3)O4—C1—C2—O3−8.0 (5)
O3i—Cd1—O1—C2−101.3 (4)C14—N2—C3—C41.2 (7)
N2—Cd1—O1—C2169.0 (3)Cd1—N2—C3—C4179.0 (4)
N1—Cd1—O1—C295.4 (3)N2—C3—C4—C50.9 (8)
O1—Cd1—O2—C1−7.7 (3)C3—C4—C5—C6−1.6 (8)
O4i—Cd1—O2—C1148.1 (3)C4—C5—C6—C140.4 (7)
O3i—Cd1—O2—C175.5 (3)C4—C5—C6—C7179.7 (5)
N2—Cd1—O2—C1−87.0 (6)C5—C6—C7—C8179.0 (6)
N1—Cd1—O2—C1−106.5 (3)C14—C6—C7—C8−1.8 (8)
O1—Cd1—N1—C12−78.2 (4)C6—C7—C8—C90.3 (10)
O4i—Cd1—N1—C1287.2 (4)C7—C8—C9—C10179.6 (6)
O2—Cd1—N1—C12−4.4 (4)C7—C8—C9—C131.1 (9)
O3i—Cd1—N1—C12169.5 (4)C13—C9—C10—C11−2.0 (7)
N2—Cd1—N1—C12−179.0 (4)C8—C9—C10—C11179.4 (6)
O1—Cd1—N1—C1397.6 (3)C9—C10—C11—C120.4 (9)
O4i—Cd1—N1—C13−96.9 (3)C13—N1—C12—C11−0.3 (8)
O2—Cd1—N1—C13171.5 (3)Cd1—N1—C12—C11175.5 (4)
O3i—Cd1—N1—C13−14.6 (6)C10—C11—C12—N10.8 (9)
N2—Cd1—N1—C13−3.2 (3)C12—N1—C13—C9−1.5 (6)
O1—Cd1—N2—C388.0 (4)Cd1—N1—C13—C9−177.7 (3)
O4i—Cd1—N2—C3−72.7 (4)C12—N1—C13—C14−179.2 (4)
O2—Cd1—N2—C3163.3 (4)Cd1—N1—C13—C144.5 (5)
O3i—Cd1—N2—C30.2 (4)C10—C9—C13—N12.6 (6)
N1—Cd1—N2—C3−176.3 (4)C8—C9—C13—N1−178.7 (5)
O1—Cd1—N2—C14−94.2 (3)C10—C9—C13—C14−179.6 (4)
O4i—Cd1—N2—C14105.1 (3)C8—C9—C13—C14−1.0 (6)
O2—Cd1—N2—C14−18.9 (6)C3—N2—C14—C6−2.5 (6)
O3i—Cd1—N2—C14178.0 (3)Cd1—N2—C14—C6179.5 (3)
N1—Cd1—N2—C141.6 (3)C3—N2—C14—C13178.1 (4)
Cd1—O2—C1—O4−169.5 (3)Cd1—N2—C14—C130.1 (5)
Cd1—O2—C1—C29.5 (4)C5—C6—C14—N21.7 (6)
Cd1ii—O4—C1—O2−174.2 (3)C7—C6—C14—N2−177.6 (4)
Cd1ii—O4—C1—C26.8 (4)C5—C6—C14—C13−178.9 (4)
Cd1—O1—C2—O3−179.9 (4)C7—C6—C14—C131.8 (6)
Cd1—O1—C2—C1−1.5 (5)N1—C13—C14—N2−3.2 (6)
Cd1ii—O3—C2—O1−176.9 (4)C9—C13—C14—N2179.0 (4)
Cd1ii—O3—C2—C14.6 (4)N1—C13—C14—C6177.4 (4)
O2—C1—C2—O1−5.6 (5)C9—C13—C14—C6−0.4 (6)
O4—C1—C2—O1173.4 (5)

Symmetry codes: (i) x−1/2, −y−1/2, z; (ii) x+1/2, −y−1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4A···O2iii0.932.383.106 (6)134
C7—H7A···O1iv0.932.573.289 (6)134
C11—H11A···O3v0.932.423.302 (7)159

Symmetry codes: (iii) −x+1/2, y+1/2, z−1/2; (iv) x−1/2, −y+1/2, z; (v) −x+3/2, y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2410).

References

  • Athar, M., Li, G. H., Shi, Z., Chen, Y. & Feng, S. H. (2008). Solid State Sci.10, 1853–1859.
  • Brandenburg, K. & Putz, H. (2004). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cao, X. Y., Yao, Y. G., Qin, Y. Y., Lin, Q. P., Li, Z. J., Cheng, J. K. & Hur, N. H. (2009). CrystEngComm, 11, 1815–1818.
  • Flack, H. D. (1983). Acta Cryst.A39, 876-881.
  • Jeanneau, E., Audebrand, N. & Louër, D. (2001). Acta Cryst. C57, 1012–1013. [PubMed]
  • Kondrashev, Y. D., Bogdanov, V. S., Golubev, S. N. & Pron, G. F. (1985). Zh. Strukt. Khim.26, 90–93.
  • Lv, Y. K., Zhan, C. H., Jiang, Z. G. & Feng, Y. L. (2010). Inorg. Chem. Commun.13, 440–444.
  • Orioli, P., Bruni, B., Vaira, M. D., Messori, L. & Piccioli, F. (2002). Inorg. Chem.41, 4312–4314. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göettingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, C. D., Lu, C. Z., Lu, S. F., Zhuang, H. H. & Huang, J. S. (2003). Dalton Trans. pp. 3192–3198.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography