PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1393–m1394.
Published online 2010 October 13. doi:  10.1107/S1600536810040031
PMCID: PMC3009254

Hexa­kis­(N,N′-dimethyl­thio­urea-κS)nickel(II) nitrate

Abstract

The title complex salt, [Ni(C3H8N2S)6](NO3)2, consists of an [Ni(Dmtu)6]2+ (Dmtu is N,N′-dimethyl­thio­urea) dication and two nitrate counter-anions. The NiII atom (site symmetry An external file that holds a picture, illustration, etc.
Object name is e-66-m1393-efi4.jpg) is coordinated by the S atoms of six Dmtu ligands within a slightly distorted octa­hedral environment. The crystal structure is characterized by weak intra­molecular N—H(...)S inter­actions and by inter­molecular N—H(...)O hydrogen bonds involving the nitrate anion (site symmetry 3.). These inter­molecular inter­actions lead to the formation of two-dimensional networks lying parallel to the ab plane. The networks are linked via non-classical inter­molecular C—H(...)O hydrogen bonds, forming a three-dimensional arrangement.

Related literature

For background to nickel(II) complexes of thio­urea and its derivatives, see: Ambujam et al. (2006 [triangle]); Basso et al. (1969 [triangle]); Bentley & Waters (1974 [triangle]); Chiesi et al. (1971 [triangle]); Crane & Herod (2004 [triangle]); Eaton & Zaw (1975 [triangle]); El-Bahy et al. (2003 [triangle]); Figgis & Reynolds (1986 [triangle]); Monim-ul-Mehboob et al. (2010 [triangle]); Sonar et al. (1979 [triangle]); Weininger et al. (1969 [triangle]); Weininger & Amma (1976 [triangle]). For the crystal structures of similar nickel(II) complexes, see: Bentley & Waters (1974 [triangle]); El-Bahy et al. (2003 [triangle]); Monim-ul-Mehboob et al. (2010 [triangle]); Weininger et al. (1969 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1393-scheme1.jpg

Experimental

Crystal data

  • [Ni(C3H8N2S)6](NO3)2
  • M r = 807.77
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-66-m1393-efi5.jpg
  • a = 13.7166 (10) Å
  • c = 35.332 (3) Å
  • V = 5756.9 (8) Å3
  • Z = 6
  • Mo Kα radiation
  • μ = 0.88 mm−1
  • T = 223 K
  • 0.30 × 0.26 × 0.24 mm

Data collection

  • Stoe IPDS 2 diffractometer
  • Absorption correction: multi-scan (MULscanABS; Spek, 2009 [triangle]) T min = 0.963, T max = 1.000
  • 3491 measured reflections
  • 1199 independent reflections
  • 851 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.056
  • S = 1.00
  • 1199 reflections
  • 79 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: X-AREA (Stoe & Cie, 2009 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97, PLATON and publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810040031/wm2412sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040031/wm2412Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the staff of the X-ray Application Lab, CSEM, Neuchâtel, for access to the X-ray diffraction equipement.

supplementary crystallographic information

Comment

Several studies have been focused on the synthesis and structural characterization of nickel(II) complexes with thiourea type ligands. These studies showed that nickel(II) can adopt a variety of coordination geometries (octahedral, tetragonal, square-planar and tetrahedral) both in the solid state and in solution, which were prepared by varying the ligands or the anions (Ambujam et al., 2006; Bentley et al., 1974; Chiesi et al., 1971; Eaton & Zaw, 1975; El-Bahy et al., 2003; Figgis & Reynolds, 1986; Monim-ul-Mehboob et al., 2010; Sonar et al., 1979; Weininger et al. 1969, Weininger & Amma, 1976). When the anion is chloride, bromide or iodide, the predominant coordination about the nickel(II) atom in the crystalline solid state is tetragonal with the halide anions in the apical positions, leading to [NiL4]X2 complexes (Ambujam et al., 2006; Chiesi et al., 1971; Crane et al., 2004; Figgis & Reynolds, 1986; Weininger & Amma, 1976), although [NiL6]X2 complexes are also formed (El-Bahy et al., 2003; Weininger et al., 1969). The formation (in the solid state) of the octahedral species NiL62+ is ascribed to crystal packing forces and extensive hydrogen bonding (Ambujam et al., 2006; El-Bahy et al., 2003; Monim-ul-Mehboob et al., 2010; Weininger et al., 1969). The coordination of nickel(II) in nitrate and the perchlorate salts is generally homoleptic octahedral in the solid state (Bentley et al., 1974; Monim-ul-Mehboob et al., 2010), but also can give such species as [NiL2(NO3)2] (Basso et al., 1969). We have recently reported on the crystal structure of a thiourea (Tu) complex of nickel(II) nitrate, [Ni(Tu)6](NO3)2 (Monim-ul-Mehboob et al., 2010). Herein, we report on the crystal structure of the title nickel(II) nitrate complex of dimethylthiourea, [Ni(Dmtu)6](NO3)2.

The molecular structure of the title complex is illustrated in Fig. 1. It is ionic and consists of a [Ni(Dmtu)6]2+ cationic unit (site symmetry 3) and two nitrate counter ions (site symmetry 3.). Atom Ni1 assumes a slightly distorted octahedral geometry, due to coordination with six sulfur atoms of the Dmtu ligands. In the cation there are weak N—H···S interactions linking adjacent ligand molecules (Table 1). The values of the bond lengths and bond angles observed in the title complex are comparable to those reported for related complexes (Ambujam et al., 2006; El-Bahy et al., 2003; Monim-ul-Mehboob et al., 2010; Weininger et al., 1969). In the only previously reported nickel(II) complex of N,N'-dimethylthiourea, [Ni(Dmtu)4]Br2 (Weininger & Amma, 1976), the nickel(II) atom is 4-coordinate, while in the title complex having the same ligand the nickel(II) atom is 6-coordinate, suggesting that in the presence of nitrate an octahedral coordination is preferred.

In the crystal of the title compound the [Ni(Dmtu)6]+2 cations and the NO3- ions are connected via N—H···O hydrogen bonds (Table 1) to form two-dimensional networks lying parallel to the ab-plane (Fig. 2). These two-dimensional sheets are linked via C—H···O hydrogen bonds (Table 1), resulting in the formation of a three-dimensional network.

Experimental

The title compound was prepared by adding 2 equivalents of N,N'-dimethylthiourea in 15 ml methanol to 0.29 g (1 mmol) of nickel(II) nitrate hexahydrate in 10 ml methanol. After stirring the mixture for 30 min the solution was filtered. The filtrate on slow evaporation yielded pale-green crystals, suitable for X-ray diffraction analysis.

Refinement

The NH H-atoms were located in difference electron-density maps. In the final cycles of least-squares refinement they was refined with a distance restraint of N—H = 0.87 (2) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.97 Å for CH3 H-atoms, with Uiso(H) = 1.5Ueq (parent C-atom).

Figures

Fig. 1.
The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [Only one of the nitrate anions is shown; Symmetry codes: a = 1 - y,x-y,z; b = 1 - x + y,1 - x,z; c = 1/3 + ...
Fig. 2.
The crystal packing of the title compound viewed along the c axis (the N—H···O and N—H···S hydrogen bonds are shown as dashed lines - see Table 1 for details; H-atoms not involved in hydrogen ...

Crystal data

[Ni(C3H8N2S)6](NO3)2Dx = 1.398 Mg m3
Mr = 807.77Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 2717 reflections
Hall symbol: -R 3 2"cθ = 2.9–26.1°
a = 13.7166 (10) ŵ = 0.88 mm1
c = 35.332 (3) ÅT = 223 K
V = 5756.9 (8) Å3Block, pale green
Z = 60.30 × 0.26 × 0.24 mm
F(000) = 2556

Data collection

Stoe IPDS 2 diffractometer1199 independent reflections
Radiation source: fine-focus sealed tube851 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] + ω scansθmax = 25.6°, θmin = 2.9°
Absorption correction: multi-scan (MULscanABS; Spek, 2009)h = −4→14
Tmin = 0.963, Tmax = 1.000k = −16→9
3491 measured reflectionsl = −42→40

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0271P)2] where P = (Fo2 + 2Fc2)/3
1199 reflections(Δ/σ)max = 0.001
79 parametersΔρmax = 0.17 e Å3
2 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.666670.333330.083330.0208 (1)
S10.50780 (4)0.25803 (5)0.03726 (1)0.0262 (1)
N10.35924 (14)0.17766 (18)0.09365 (4)0.0319 (5)
N20.29514 (15)0.09027 (15)0.03650 (5)0.0295 (5)
C10.37831 (17)0.16823 (15)0.05723 (5)0.0246 (6)
C20.25557 (19)0.10275 (19)0.11355 (6)0.0399 (7)
C30.3066 (2)0.0703 (2)−0.00341 (6)0.0409 (8)
O10.05182 (15)0.10490 (12)0.05290 (4)0.0449 (5)
N30.000000.000000.05255 (7)0.0300 (6)
H1N0.4165 (16)0.2300 (15)0.1053 (5)0.029 (6)*
H2A0.194900.112400.103700.0600*
H2B0.265200.120400.140400.0600*
H2C0.237500.025400.109900.0600*
H2N0.2303 (14)0.0569 (17)0.0455 (5)0.021 (5)*
H3A0.344100.14160−0.016800.0610*
H3B0.232500.02290−0.014300.0610*
H3C0.350700.03320−0.005700.0610*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0195 (2)0.0195 (2)0.0232 (2)0.0098 (1)0.00000.0000
S10.0203 (2)0.0277 (3)0.0272 (2)0.0095 (3)−0.0019 (2)−0.0009 (3)
N10.0223 (8)0.0328 (11)0.0325 (7)0.0078 (10)−0.0009 (6)−0.0031 (9)
N20.0180 (9)0.0281 (10)0.0382 (8)0.0084 (8)−0.0036 (8)−0.0040 (8)
C10.0218 (10)0.0222 (11)0.0336 (9)0.0138 (8)−0.0037 (7)0.0011 (7)
C20.0299 (12)0.0453 (15)0.0373 (10)0.0133 (11)0.0033 (9)0.0028 (9)
C30.0376 (14)0.0439 (15)0.0398 (11)0.0193 (12)−0.0136 (10)−0.0131 (10)
O10.0306 (10)0.0206 (7)0.0794 (10)0.0097 (9)0.0077 (10)0.0079 (7)
N30.0261 (9)0.0261 (9)0.0379 (13)0.0131 (5)0.00000.0000

Geometric parameters (Å, °)

Ni1—S12.4929 (6)N2—C31.460 (3)
Ni1—S1i2.4929 (7)N2—C11.327 (3)
Ni1—S1ii2.4929 (5)N1—H1N0.86 (2)
Ni1—S1iii2.4929 (5)N2—H2N0.83 (2)
Ni1—S1iv2.4929 (6)C2—H2B0.9700
Ni1—S1v2.4929 (7)C2—H2C0.9700
S1—C11.727 (2)C2—H2A0.9700
O1—N31.2462 (14)C3—H3B0.9700
N1—C11.332 (2)C3—H3C0.9700
N1—C21.453 (3)C3—H3A0.9700
S1—Ni1—S1i81.98 (2)C1—N2—H2N118.9 (13)
S1—Ni1—S1ii81.98 (2)C3—N2—H2N116.8 (13)
S1—Ni1—S1iii99.78 (2)O1—N3—O1vi119.99 (14)
S1—Ni1—S1iv177.39 (2)O1vii—N3—O1vi119.99 (14)
S1—Ni1—S1v96.33 (2)O1—N3—O1vii119.99 (14)
S1i—Ni1—S1ii81.98 (2)N1—C1—N2118.7 (2)
S1i—Ni1—S1iii96.34 (2)S1—C1—N2120.83 (15)
S1i—Ni1—S1iv99.78 (2)S1—C1—N1120.48 (16)
S1i—Ni1—S1v177.40 (2)N1—C2—H2B109.00
S1ii—Ni1—S1iii177.40 (3)H2A—C2—H2C110.00
S1ii—Ni1—S1iv96.33 (2)N1—C2—H2C109.00
S1ii—Ni1—S1v99.78 (2)H2A—C2—H2B110.00
S1iii—Ni1—S1iv81.98 (2)N1—C2—H2A109.00
S1iii—Ni1—S1v81.98 (2)H2B—C2—H2C109.00
S1iv—Ni1—S1v81.97 (2)N2—C3—H3C109.00
Ni1—S1—C1113.77 (7)H3A—C3—H3C109.00
C1—N1—C2124.68 (19)H3B—C3—H3C110.00
C1—N2—C3123.7 (2)H3A—C3—H3B109.00
C1—N1—H1N113.7 (13)N2—C3—H3A110.00
C2—N1—H1N121.5 (13)N2—C3—H3B109.00
S1i—Ni1—S1—C1124.24 (8)Ni1—S1—C1—N2−154.41 (17)
S1ii—Ni1—S1—C1−152.79 (8)C2—N1—C1—S1−176.58 (19)
S1iii—Ni1—S1—C129.15 (8)C2—N1—C1—N24.9 (4)
S1v—Ni1—S1—C1−53.76 (8)C3—N2—C1—S12.9 (3)
Ni1—S1—C1—N127.1 (2)C3—N2—C1—N1−178.6 (2)

Symmetry codes: (i) −y+1, xy, z; (ii) −x+y+1, −x+1, z; (iii) y+1/3, x−1/3, −z+1/6; (iv) −x+4/3, −x+y+2/3, −z+1/6; (v) xy+1/3, −y+2/3, −z+1/6; (vi) −x+y, −x, z; (vii) −y, xy, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···S1v0.86 (2)2.520 (19)3.367 (2)168.6 (17)
N2—H2N···O1vi0.83 (2)2.14 (2)2.947 (3)163.4 (18)
C3—H3B···O1viii0.972.413.180 (3)136

Symmetry codes: (v) xy+1/3, −y+2/3, −z+1/6; (vi) −x+y, −x, z; (viii) y, −x+y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2412).

References

  • Ambujam, K., Thomas, P. C., Aruna, S., Anand, D. P. & Sagayaraj, P. (2006). Cryst. Res. Technol.41, 1082–1088.
  • Basso, S., Costamagna, J. A. & Levitus, R. (1969). J. Inorg. Nucl. Chem.31, 1797–1805.
  • Bentley, G. A. & Waters, J. M. (1974). J. Inorg. Nucl. Chem.36, 2247–2252.
  • Chiesi, A., Mangia, A., Nardelli, M. & Pelizzi, G. (1971). J. Chem. Crystallogr.1, 285–289.
  • Crane, J. D. & Herod, A. (2004). Inorg. Chem. Commun.7, 38–41.
  • Eaton, D. R. & Zaw, K. (1975). Can. J. Chem.53, 633–643.
  • El-Bahy, G. M. S., El-Sayed, B. A. & Shabana, A. A. (2003). Vib. Spectrosc.31, 101–107.
  • Figgis, B. N. & Reynolds, P. A. (1986). J. Chem. Soc. Dalton Trans. pp. 125–134.
  • Monim-ul-Mehboob, M., Akkurt, M., Khan, I. U., Sharif, S., Asif, I. & Ahmad, S. (2010). Acta Cryst. E66, i57–i58. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sonar, M. H., Hiremath, A. C. & Murty, A. S. (1979). Monatsh. Chem.110, 167–175.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie. (2009). X-AREA and X-RED32 Stoe & Cie GmbH, Darmstadt, Germany.
  • Weininger, M. S. & Amma, E. L. (1976). J. Coord. Chem.5, 91–99.
  • Weininger, M. S., O’Connor, J. E. & Amma, E. L. (1969). Inorg. Chem.8, 424–431.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography